Прямоугольная диметрия Построить чертеж кондуктора. Построить проекции конуса вращения Выполнение чертежей деталей, имеющих сопряжения Построить проекции отрезка Определить угол наклона плоскости Построить три проекции призмы

Лабораторные работы

Элементы релятивистической механики

Преобразования Галилея и механический принцип относительности.

В механике Ньютона при переходе от одной инерциальной системы отсчета к другой, движущейся относительно первой поступательно с постоянной скоростью, пользуются преобразованиями координат и времени, которые называются преобразованиями Галилея. Они основаны на двух аксиомах:

Ход времени одинаков во всех системах отсчета;

Размеры тела не зависят от скорости его движения. 

 Рассмотрим две системы отсчета – инерциальную систему К (с координатами x,y,z), которую будем считать неподвижной, и систему К’(с координатами x’,y’,z’), движущуюся относительно системы К прямолинейно и равномерно с постоянной скоростью , направленной вдоль оси х. Отсчет времени начнем с того момента, когда начала координат обеих систем совпадают. В произвольный момент времени t системы расположены, как показано на рисунке 6.1. Скорость  направлена вдоль ОО’, радиус-вектор, проведенный из О в О’ . Связь между координатами произвольной точки А в обеих системах будет иметь вид . В проекциях на оси координат это уравнение расписывается в следующем виде x = x’+ut; y = y’; z = z’. В классической механике предполагается, что ход времени не зависит от относительного движения систем отсчета, откуда следует, что t =t’. Таким образом, мы получили совокупность четырех уравнений x = x’+ut;  y = y’; z = z’; t =t’,

называемых преобразованиями Галилея.

Найдем правило сложения скоростей в классической механике. Для этого продифференцируем выражение для r по времени и получим:

  или  .

Последнее выражение представляет собой правило сложения скоростей в классической механике: скорость материальной точки относительно системы К равна векторной сумме ее скорости относительно системы К’ и скорости системы К’ относительно К.

Найдем ускорение точки А в системе К, для этого продифференцируем формулу сложения скоростей по времени,

.

Мы получили, что, если система К’ движется относительно К прямолинейно и равномерно т.е. система К’ является инерциальной, то ускорения точки одинаковы в обеих системах. Следовательно, если на точку А не действуют другие тела (а=0), то и а’=0. Если ускорение какого-либо тела в двух произвольно выбранных инерциальных системах отсчета одинаково, то согласно второму закону Ньютона силы, действующие на тело в системах К и К’ также будут одинаковыми. Следовательно, второй закон Ньютона сохраняет вид в любой инерциальной системе отсчета.

Можно доказать, что и другие законы механики имеют одинаковый вид во всех инерциальных системах отсчета. Таким образом, можно сформулировать механический принцип относительности Галилея: при переходе от одной инерциальной системы отсчета к другой уравнения механики не изменяются, т.е. инвариантны по отношению к преобразованиям координат. Записанные соотношения справедливы лишь в случае u ‹‹ с, а при скоростях, сравнимых со скоростью света, преобразования Галилея заменяются наиболее общими преобразованиями Лоренца.

Постулаты специальной (частной) теории относительности.

 Классическая механика прекрасно описывает движение макротел, движущихся с малыми скоростями. Однако в конце 19 века выяснилось, что ее выводы противоречат некоторым опытным данным. В частности, при изучении движения быстрых заряженных частиц оказалось, что оно не подчиняется законам классической механики. Возникли затруднения при попытке применить механику Ньютона к объяснению распространения света. Опыты показали, что скорость света остается одинаковой и независимой от скорости источника света и скорости приемника света. То есть скорость света оказалась одна и та же в двух инерциальных системах отсчета, одна из которых покоится, а другая движется относительно первой. Это противоречило правилу сложения скоростей  классической механики. Одновременно было показано противоречие между классической теорией и уравнениями Максвелла, лежащими в основе понимания света как электромагнитной волны.

Необходимо было создать новую механику, которая объяснила бы эти факты, но содержала бы и классическую механику, как предельный случай малых скоростей. Это удалось сделать А.Эйнштейну, который заложил основы специальной теории относительности. Эта теория представляет собой современную физическую теорию пространства и времени. В основе теории лежат постулаты Эйнштейна, сформулированные им в 1905 г. и вытекающие из экспериментов.

І. Принцип относительности: Никакие опыты, проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли данная система или движется прямолинейно и равномерно. То есть все законы природы (а не только законы механики) инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой.

ІІ. Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или приемника (наблюдателя) и одинакова во всех инерциальных системах отсчета. Согласно второму постулату, постоянство скорости света – фундаментальное свойство природы.

6. 3.  Преобразования Лоренца.

Исходя из этих принципов Эйнштейн, получил ряд необычных выводов, в частности о том, что время в разных инерциальных системах течет неодинаково. Эйнштейн показал, что для выполнения принципов необходимо преобразования Галилея заменить преобразованиями Лоренца.

 Рассмотрим две инерциальные системы отсчета: К(x,y,z) и K’(x’,y’,z’), движущуюся относительно К поступательно в направлении оси х с постоянной скоростью v (рис.6.2). Пусть в начальный момент времени t= t’=0, когда начала координат О и О’ совпадают, в точке О излучается световой импульс.

Преобразования, полученные впервые Лоренцом, имеют вид (здесь b = v/c < 1):

При переходе от K’→К:            ,  ,   ,  

 При переходе K →К’:               .

 Видно, что относительно перемены системы отсчета преобразования симметричны и отличаются лишь знаком при v. Это очевидно, т.к. если скорость движения К’ относительно К равна v, то скорость К относительно К’ равна –v.

Следствия из преобразований Лоренца.

  Из преобразований Лоренца вытекает важный вывод о том, что и расстояние, и промежуток времени между двумя событиями меняются при переходе к другой инерциальной системе отсчета. В закон преобразования координат входит время, а в закон преобразования времени – координаты, т.е. устанавливается связь пространства и времени. Рассмотрим подробнее ряд следствий из преобразований Лоренца.

1.  Одновременность событий в разных системах отсчета.

Рассмотрим ситуацию, когда в точках с координатами х1 и х2 в системе отсчета К(x,y,z) в моменты времени t 1 и t2 - происходят какие либо два события, промежуток времени между событиями обозначим Dt (t2 - t 1 = Dt). Тогда, согласно преобразованиям Лоренца, в системе отсчета K’(x’,y’,z’) промежуток времени и расстояние между этими событиями будут равны

  

Отсюда видно, что если в системе К два события происходят в одной точке (Dх=0) и являются одновременными (Dt=0), то они являются одновременными и пространственно совпадающими (Dt’=0, Dx’=0) в любой инерциальной системе отсчета. Но из этих же уравнений следует, что если события в системе К одновременны (Dt=0), но пространственно разобщены (Dх = х2 - х1 ≠ 0), то в системе K’ они произойдут не одновременно (Dt’ = t’2 ‑ t’1  ≠ 0). Следовательно, понятие одновременности относительно.

Гармонический осциллятор. Примеры гармонических осцилляторов. Тела, которые при движении совершают гармонические колебания, называют гармоническими осциляторами. Рассмотрим ряд примеров гармонических осциляторов.

Волновые процессы Понятие о волнах. Виды волн. Если какую-либо частицу упругой среды заставить колебаться, то благодаря взаимодействию между частицами, соседние частицы тоже начнут колебаться, такой процесс вовлечения частиц в колебательное движение будет охватывать со временем все большее число частиц. Процесс распространения колебаний в среде называется волновым процессом или волной. В таком процессе сами частицы среды не перемещаются на большие расстояния, они только совершают колебания около положений равновесия, причем частицы в разных точках колеблются с некоторым сдвигом по фазе.

Основной закон динамики релятивистской частицы. Масса релятивистских частиц, т.е. частиц, движущихся со скоростями v ~ с не постоянна, а зависит от их скорости: . Здесь m0 – это масса покоя частицы, т.е. масса, измеренная в той системе отсчета, относительно которой частица покоится. Эта зависимость подтверждена экспериментально. На основании ее рассчитывают все современные ускорители заряженных частиц (циклотрон, синхрофазотрон, бетатрон и т.д.).


На главную