Прямоугольная диметрия Построить чертеж кондуктора. Построить проекции конуса вращения Выполнение чертежей деталей, имеющих сопряжения Построить проекции отрезка Определить угол наклона плоскости Построить три проекции призмы

Лабораторные работы

 Закон сохранения импульса.

Рассмотрим общий случай - систему n взаимодействующих материальных точек (тел). На каждое тело действуют внутренние и внешние силы. Силы взаимодействия между телами системы называются внутренними, а силы, которые действуют со стороны тел, не входящих в рассматриваемую систему, называются внешними. Массы точек - m1, m2, ..., mn, скорости их движения - v1, v2,...,vn. Пусть - внутренние силы, действующие на первую точку со стороны второй, третьей и т.д. - внешние силы, действующие на первую, вторую и т.д. материальные точки (рис.2.3.).

Так как внутренние силы являются силами взаимодействия между телами, то они должны подчиняться третьему закону Ньютона .

Рис.2.3. Силы взаимодействия в системе n материальных точек.

Запишем II закон Ньютона для каждого из n тел:

. . . . . .

.

 

Если просуммировать эти уравнения по всем телам и учесть, что при двойном суммировании внутренних сил, согласно третьему закону Ньютона

 , то получаем , где , .

Если система замкнутая, т.е. на нее не действуют внешние силы, то , , т.е. .

Это выражение является законом сохранения импульса. Суммарный импульс замкнутой системы точек (тел) не меняется с течением времени.

Закон сохранения импульса находит широкое применение в природе и технике. Примером может служить явление отдачи ружья при выстреле пули. Выстрел производится в горизонтальном направлении (рис.2.4).

 

Подпись:                   Рис.2.4. Применение закона сохранения импульса к стрельбе из ружья.


  Систему ружье-пуля можно считать изолированной системой и к ней применим закон сохранения импульса: , m и v – масса и скорость пули, M и v0 – масса и скорость ружья. В начальный момент времени (до выстрела) система покоилась (v=v0=0), следовательно константа в уравнении равна нулю. Отсюда, соотношение скоростей v и v0 после выстрела, можно рассчитать из равенства , .

Т.к. m<<M, то v>>v0; знак «минус» указывает на противоположную направленность скоростей. Эксперименты доказывают, что закон сохранения импульса выполняется и для замкнутых систем микрочастиц, т.е. в квантовой механике. Таким образом, закон сохранения импульса универсален и является фундаментальным законом природы.

 Центр масс. Закон движения центра масс.

Центр масс (или центр инерции) системы материальных точек (тел) есть некоторая точка в пространстве С, положение которой характеризует распределение масс системы. Ее радиус-вектор равен : , где n – число точек (тел) системы, m1, m2…mn – их массы; - их радиусы-векторы; m – общая масса системы. Скорость центра масс

. Так как - импульс всей системы, то  или импульс системы  равен произведению массы системы на скорость ее центра масс.

 По II закону Ньютона . Отсюда , т.е. центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на нее действует сила, равная геометрической сумме всех внешних сил, действующих на тела системы. Это есть закон движения центра масс. Если система замкнута, то  и .

Следовательно центр масс замкнутой системы движется прямолинейно и равномерно, либо остается неподвижным. Например, молоток вращается, а его центр масс движется прямолинейно и равномерно (рис.2.5).

 

 Рис.2.5. Свободно летящий молоток. Его центр инерции помечен крестиком.

Кинематические характеристики вращательного движения. Вращательным называется такое движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

Механика делится на три раздела: статику, кинематику, динамику. Статика изучает законы равновесия системы тел. Она подробно изучается в курсе теоретической механики. Поэтому в предлагаемом пособии этот раздел мы опускаем.

Кинематические характеристики и уравнения поступательного движения. Кроме модели реального тела в виде материальной точки, в физике часто используется модель абсолютно твердого тела. Тело считается абсолютно твердым, если в условиях рассматриваемой задачи оно не деформируется, т.е. расстояние между любыми двумя произвольными точками сохраняется неизменным.

Классическая динамика базируется на трех законах Ньютона. Первый закон Ньютона: Если на материальную точку не действуют силы или приложенные силы взаимноуравновешены (т.е. суммарная или результирующая сила равна нулю), то материальная точка будет находиться в состоянии покоя (=0) или равномерного прямолинейного движения (=const).


На главную