Электрические сети энергосистем Турбины тепловых и атомных электростанций Развитие атомной энергетики Анализ мирового энергетического рынка Воздействие радиации на человека Машиностроение для энергетики

Аккумуляторы энергии на базе супермаховиков могут быть использованы для:

Аварийного электропитания систем безопасности АЭС и других промышленных объектов, требующих надежного резервирования электропитания;

покрытия пиковых нагрузок электросетей, участия в общем, первичном регулировании частоты (ОПРЧ) сети;

источника электропитания электромобилей;

источника электропитания электропоездов;

источника электропитания водных судов и других транспортных средств;

источников бесперебойного электропитания в быту и промышленности.

Американская компания Beacon Power, основанная в 1997 году, создала целую линейку тяжёлых стационарных супермаховиков, предназначенных для включения в промышленные энергосети [12].

Расчётный срок службы этой конструкции - 20 лет, диапазон рабочих температур - от минус 40 до плюс 50 градусов по Цельсию. Заявленная устойчивость системы к землетрясениям - 40 секунд без повреждений при силе толчков до 7,6 по шкале Рихтера.

Beacon Power сообщает, что потеря энергии, закачанной и позднее забранной из этих накопителей, составляет 2%, что заметно лучше, чем у систем хранения энергии, основанных на иных принципах (химические аккумуляторы, гидроаккумулирующие станции). Аккумуляторы предназначены для работы в качестве буфера, компенсирующего резкие пики и спады потребления в течение суток. В США, например, уже действует многомиллионный рынок регулирования частоты тока в сети. Специализированные компании предлагают генерирующим компаниям услуги по регулированию частоты в сети. Энергокомпании, испытывающие проблемы с наличием и мгновенным подключением резервных мощностей в пики нагрузки и с проблемой "лишней" энергии в моменты спада потребления, заключают контракты с небольшими компаниями на услугу "регулирование частоты". Для АЭС и ТЭС гонять то "вверх", то "вниз" мощности энергетически невыгодно, а если говорить буквально о секундной оперативности в изменении мощности, то и попросту – невозможно. Для таких услуг Beacon Power предлагает применять целые кластеры маховичных накопителей с соответствующей управляющей электроникой, которые обладают высокой пиковой мощностью и могут очень быстро реагировать на скачки частоты в подключённой к ним сети. Этот проект Beacon Power называется Smart Energy Matrix. В конечном виде он будет представлять собой 18-тонный контейнер (морской, 30-футовый), содержащий 10 маховичных накопителей Smart Energy 25, с продолжительной суммарной мощностью в 1 мегаватт (на короткое время, в несколько минут, и до 2 мегаватт), и с накапливаемой энергией - до 250 киловатт-часов. Время реакции всей этой системы на уход частоты в подшефной сети – порядка 5 миллисекунд. Уже в следующем году компания намерена построить полноразмерный образец Smart Energy Matrix. В планах компании – строительство целых стационарных комплексов по регулированию частоты сети (и поставке мощностей в пик нагрузки сети). Причём фирма намерена не только предложить такой продукт клиентам, но сначала построить в разных частях страны такие заводы для собственного владения. Beacon Power станет не только поставщиком оборудования, но и сама выйдет на рынок регулирования частоты сети. 20-мегаваттный (по максимальной мощности, выдаваемой или, наоборот, впитываемой в течение 15 минут) регулирующий завод будет состоять из 200 супермаховиков. Их суммарный запас энергии составит 5 мегаватт-часов. Поглощая или выдавая по первому требованию эти самые 20 мегаватт мощности, такое сооружение (занимающее, к слову, площадь всего в 20 соток, включая всё сопутствующее оборудование) способно обеспечивать 40-мегаваттную "вилку" в реагировании той или иной электрической сети на колебания в потреблении энергии. При этом время полной реакции, то есть, время, требуемое на подключение в сеть всей своей пиковой мощности, у данного завода составит менее 4 секунд.

Не надо также забывать, что в случае использования подобных аккумуляторов для ОПРЧ блок АЭС будет работать в базовом режиме, а, следовательно, с наивысшим коэффициентом использования установленной мощности (КИУМ). Установка 500 МВт аккумулирующих мощностей эквивалентна строительству нового блока АЭС в 1000МВт, а стоимость одного блока колеблется в диапазоне 1.5-1.6 млрд. долларов США [15]. Стоимость аккумуляторов оценивается на уровне 400-500 $/кВт установленной мощности [17], и это при сроке монтажа не более 3-4 месяцев.

С экономической точки зрения разработка кластеров массивных супермаховиков, подобных разработкам Beacon Power, в нашей энергетике может принести значительную прибыль с учетом вводимого ограничения по тарифам для АЭС и ТЭС, не участвующих в регулировании частоты сети. Не надо забывать и о повышении надежности и безопасности оборудования АЭС и ТЭС, при условии постоянной работы в базовом режиме без колебаний мощности. Перспективы для подобных разработок у нас есть: это приоритет по патентам профессора Н.Гулиа и реальный опыт атомпрома при создании высокооборотных центрифуг для обогащения урана. По заказу фирмы Сименс Н.Гулиа испытаны магнитные подшипники для ротора весом 1.5 тоны. Российские разработки в области высокооборотных центрифуг считаются одними из лучших в мире. В ЦНИИ «Дельфин», специализирующемся на разработке гироскопов с быстровращающимся ротором для ВМФ, разработан виброустойчивый специальный гидростатический подшипник скольжения, выдерживающий 300 000 оборотов в минуту. Соединение этих составляющих при соответствующем финансировании может создать условия для разработки в России супермаховика промышленного использования. Подобные разработки находятся на стыке сразу нескольких направлений техники, поэтому для решения проблемы требуется аналитическое руководство и планирование НИОКР на уровне отрасли.

Не надо забывать и о других приложениях подобных систем аккумулирования, о которых говорилось выше (источники бесперебойного питания, источники аварийного питания, транспорт и т.д.). Так как количество аккумулированной энергии в маховике пропорционально квадрату скорости, то выгоднее использовать легкий материал с высоким удельным сопротивлением на разрыв. Идеальным материалом может быть паутина, как самый прочный известный в природе материал (наматывать маховик, как шпульку ниток). На базе нанотехологии разработано углеродное волокно невероятной прочности — на несколько порядков прочнее стали. Подобные разработки открывают неограниченные возможности для кольцевых супермаховиков с концентрацией энергии до 50 кВт·ч/кг и выше, что превышает показатели, например, водорода, как самого энергоемкого на сегодняшний день материала. Доведение до подобных параметров плотности энергии совершит переворот в энергетике и транспорте. Вполне возможно, что в будущем супермаховики будут основным конкурентом водородной энергетики, которой все прочат большие перспективы. При плотности энергии, сопоставимой с энергетическими источниками (бензин, пропан и даже водород) супермаховики можно перевозить, например, на транспорте, как перевозится нефть или бензин в цистернах, или использовать, как мотор в транспорте или как резервный источник электропитания.

ВВС США выделили деньги на разработку стартового комплекса запуска спутника с помощью магнитной пушки и систем магнитной подвески. Предполагается построить масштабный прототип системы с кольцом диаметром около 50 метров. А в окончательном виде система должна представлять собой кольцо диаметром 2 километра с комплексом сверхпроводящих электромагнитов для удержания и разгона контейнера со спутником до скорости 10км/с [16]. Разгонное кольцо в этой системе, по сути, может служить прототипом кольцевого супермаховика, подтверждающим фактором технической возможности создания кольцевого супермаховика. Применение больших кольцевых супермаховиков для нужд аккумулирования энергии, вырабатываемой на АЭС и ТЭС, позволит перевести весь парк АЭС на работу исключительно в базовом режиме, что, в свою очередь, позволит увеличить коэффициент использования установленной мощности (КИУМ), повысить надежность и устойчивость работы АЭС, исключить потери на балансирующем рынке и потери в виде штрафных санкций (до 5% от тарифа отпускаемой электроэнергии) за неучастие в ОПРЧ, выйти на рынок услуг по регулированию частоты сети не только в России, но и за рубежом. В настоящее время приложены большие усилия для подтверждения возможности топлива и другого оборудования АЭС работать в маневренном режиме. Однако, при комплексном и системном подходе к этой проблеме, возможны другие более изящные и экономичные решения.


На главную