Электрические сети энергосистем Турбины тепловых и атомных электростанций Развитие атомной энергетики Анализ мирового энергетического рынка Воздействие радиации на человека Машиностроение для энергетики

Твёрдыми радиоактивными отходами на АЭС являются в основном отдельные детали или узлы реакторного оборудования, инструменты, предметы спецодежды и средств индивидуальной защиты персонала, ветошь, фильтры из систем газоочистки. Эти отходы после переработки (сжигание, прессование, плавление) складируются в специальные хранилища-могильники.

По показателю радиационного воздействия на человека и природное окружение нормально работающую АЭС можно считать безотходным производством.

Следует отметить важность не только радиационных факторов возможных вредных воздействий АЭС на экосистему, но и тепловое и химическое загрязнение окружающей среды, механическое воздействие на обитателей водоемов-охладителей, изменения гидрологических характеристик прилежащих к АЭС районов. Большое количество теплоты отводится в окружающую среду от конденсаторов паровых турбин, как и на ТЭС. Это неизбежное следствие второго закона термодинамики. Но на АЭС эта теплота приблизительно в 1,2 – 1,3 раза больше, чем на ТЭС, вследствие более низкого коэффициента полезного действия. При этом на ТЭС теплота отводится в атмосферу еще и с дымовыми газами.

Основные экологические проблемы эксплуатации АЭС

Главная проблема в развитии АЭС – разработка экономичных, надёжных способов захоронения больших количеств радиоактивных отходов и отработавшего ядерного топлива.

Концептуальные основы обращения с РАО

Рис. 11.1. Современный вариант концепции обращения с РАО ядерного энергоблока

Специфика РАО требует применения специфичных методов обеспечения безопасности для человека и биосферы.

Обращение с жидкими радиоактивными отходами подразумевает хранение в специальных емкостях-хранилищах, нахождение в открытых водоёмах и специальных бассейнах, подземное захоронение в пластах-коллекторах, сбрасывание на специально выделенных участках морей и океанов. Технологии обращения с жидкими РАО требуют весьма высоких затрат. Стоимость переработки и хранения жидких РАО составляет 5 – 10 тыс. долларов/м3.

Обращение с твёрдыми радиоактивными веществами включает в себя хранение в металлических ёмкостях, цементирование, битумирование, прессование, сжигание, остекловывание.

Надёжная защита биосферы от жидких РАО возможна со значительно меньшими затратами, если использовать геологические барьеры безопасности. В мире накоплен опыт эксплуатации десятков тысяч скважин, через которые в глубинные горизонты, залегающие на глубинах от нескольких сотен до нескольких тысяч метров, закачивались различные промышленные, токсические и радиоактивные отходы. При подборе благоприятных геологических условий недра планеты способны удерживать в ограниченных объёмах различные вещества в твёрдом и жидком виде, сохраняя стабильность своих структур в течение миллионов лет. Благодаря высоким сорбционным характеристикам песчаных и глинистых пород подземные потоки воды только в слабой степени способны выщелачивать и переносить химические элементы. Поглощающая способность пластов-коллекторов, мощность и низкая проницаемость покрывающих глинистых слоёв служат надёжными барьерами безопасности закаченных жидких РАО.

В России действуют 17 глубоких хранилищ, в том числе 3 для удаления жидких РАО. В США эксплуатируются 560 нагнетательных скважин для удаления 46 млн. м3 ежегодно жидких токсичных промышленных стоков, имеются такие установки в странах Европы, Азии, Австралии. Широкое развитие получила закачка отходов бурения на морских платформах (Северное море, Мексиканский залив, Аляска).

Изоляцию жидких РАО от биосферных процессов в глубинных пластах-коллекторах следует рассматривать как инновационную природоохранную технологию.

Выбор места строительства новых АЭС в оптимальных для этой технологии геологических условиях повысит экологическую безопасность и позволит значительно снизить экономические затраты на всех этапах «жизни» АЭС.

Отработавшее ядерное топливо

Отработавшее ядерное топливо (ОЯТ) – это облученное топливо. Оно получается при плановом (обычно от двух до семи лет) облучении ядерного топлива в активной зоне реактора. По сравнению со свежим топливом в его составе меньше содержание урана-235 (поскольку он выгорает), зато накапливаются изотопы плутония, другие трансурановые элементы, а также осколки, или продукты деления – ядра средних масс. С течением времени изменяются также и физические характеристики конструкционных материалов тепловыделяющих сборок. В определенный момент они становятся функционально непригодны для нормальной работы реактора и подлежат удалению из него. Реактор ВВЭР мощностью 1000 МВт является источником 30 т ОЯТ ежегодно. Отработавшее топливо обычно перегружается из активной зоны с помощью специальной перегрузочной машины в бассейны выдержки, где хранится в течение 3–5 лет, при этом существенно снижается радиоактивность и тепловыделение, становится возможным вывоз ОЯТ с площадки АЭС. ОЯТ транспортируется на завод РТ-1 или РТ-2 для переработки или длительного хранения.

Таблица 5

Тепловыделение и активность 1 т ОЯТ, выгруженного из ВВЭР мощностью 1000 МВт (э)

Выдержка, годы

Тепловыделение, кВт 

Активность, МКи

0,4

21

4,6

1

10

2,3

2

4,7

1,3

5

1,2

0,5

10

1,0

0,3

Совокупность технологических операций, которые начинаются с выгрузки и промежуточного хранения ОЯТ, зависит от вида ядерного топливного цикла (ЯТЦ). Конечной стадией в разомкнутом ЯТЦ является захоронение ОЯТ, которые в данном случае классифицируются как радиоактивные отходы (РАО), в стабильные геологические формации. Захоронение высокоактивных РАО предполагает размещение их в хранилище без последующего изъятия при условии полной изоляции от биосферы. Концепция захоронения основана на сочетании природных и искусственных защитных барьеров.

В замкнутом ЯТЦ осуществляется переработка ОЯТ, которая заключается в извлечении урана и плутония. При выгрузке из реактора в 1 от ОЯТ содержится 950—980 кг U-235 и U-238, 5,5—9,6 кг плутония, а также 26 кКи других трансурановых радионуклидов (нептуний, америций, кюрий).

Переработку ОЯТ в качестве официальной концепции выбрали Франция, Великобритания, Франция и Россия.

По концепции, принятой в России, отработавшее ядерное топливо не относится к РАО, кроме ОЯТ РБМК, которое «пока не предлагается перерабатывать».

Ядерная энергетика, базирующаяся на полностью топливном цикле, имеет перспективу широкого развития при вовлечении в топливный цикл реакторов на быстрых нейтронах.

Следует сказать, что за 50 лет исследований в нашей стране на уровне опытно-промышленного обоснования достигнуто подтверждение возможности не только обеспечения безопасности, но и промышленной переработки, обезвреживания и захоронения радиоактивных отходов с учётом требований экологии. Таким образом, замкнутый топливный цикл с расширенным воспроизводством топлива является основой долгосрочного развития ядерной энергетики.

В настоящее время в большинстве стран темпы наработки ОЯТ как по техническим, так и по экономическим причинам превосходят мощности его радиохимической переработки. И поэтому большая часть ОЯТ после выгрузки из реактора и выдержки в пристанционном хранилище направляется на длительное (десятки лет) хранение. Такой подход к организации ЯТЦ называется «отложенным».

Поскольку в результате радиохимической переработки ОЯТ образуется большой объем РАО, ряд стран – США, Канада, Швеция, Испания и др., используют долговременное (до 50 лет) хранение ОЯТ, что дает возможность подготовиться к захоронению, но не исключает в дальнейшем возможности переработки. Эксперты США и Канады считают, что современный уровень химической технологии регенерации ОЯТ не соответствует требованиям экологической безопасности.

Концепция прямого захоронения ОЯТ пока нигде не реализуется.


На главную