Позиционные и метрические задачи на плоскости Гранные поверхности Поверхности вращения Виды. Разрезы. Сечения Основные позиционные задачи Соединение части вида и части разреза Тела, ограниченные поверхностями вращения

Начертательная геометрия. Примеры выполнения задач

Задача №6

Построить проекции отрезка |МN| =30мм горизонтально проецирующей прямой при условии, что точка В делит отрезок пополам.

1. Горизонтально проецирующая прямая MN параллельна сразу двум плоскостям проекций: П1 и П2.

Отложить 15мм вверх и вниз от точки В2

2. Фронтальная ее проекция – M2N2 проецируется без искажения на П2 и совпадает с линиями связи, а горизонтальная проекция проецируется в точку, которая называется главной проекцией и обладает собирательными свойствами (М1=N1=В1).

B1=N1=M1 – горизонтально конкурирующие точки

 

Задача №8

Определить истинную длину отрезка АВ и углы его наклона к плоскостям проекций П1 и П2

1. Анализ условия: ни одна из проекций отрезка АВ не || и не ^ линиям связи, значит задана прямая общего положения (Модуль №1, стр. 20).

A1B1 – первый катет. Перпендикуляр к A1B1 можно провести как из точки A1 так и из В1

2. Двухкартинный чертеж Монжа обратим, поэтому для нахождения натуральной величины отрезка АВ применяют метод прямоугольного треугольника. (Модуль №1, стр. 14).

А1А0 – второй катет. Гипотенуза А0В1 – это натуральная величина |AB| - это натуральная величина |AB|. Угол a - есть угол наклона AB к П1.

Аналогично, можно найти натуральную величину отрезка АВ и угол (b) наклона данного отрезка АВ к П2, построив прямоугольный треугольник на П2. Самостоятельно.

 

Задача №10

Построить горизонтальную проекцию отрезка АВ, если Ðb = 20° (угол наклона к П2), точка В дальше от П2, чем точка А.

Решение задачи сводится к построению горизонтальной проекции точки В Þ В1, т.е. надо определить разность удаления концов отрезка АВ до П2.

Как это можно сделать?

Только построив прямоугольный треугольник на П2 для этого информации?

Да, т.к. есть один катет А2В2 и угол наклона гипотенузы к нему.

Провести линию связи из В2 т.к. В1-В2 находятся на одной линии связи. Провести из точки А вспомогательную прямую ^ А1А2 т.к. по условию точка В дальше от П2, чем точка А.

А2В2 - первый катет. Перпендикуляр (второй катет) можно проводить из любой точки А2 или В2.

Построить из точки А2 угол 20° (перенести графически) с помощью циркуля.

В2В0 (Dу) - второй катет. Гипотенуза А2В0 -натуральная величина отрезка АВ.

В2В0 - значение второго катета отложить от точки В Þ В1.

Нанесение размеров (ГОСТ 2.307-68) Основанием для определения величины изображенного изделия и его элементов служат размерные числа, нанесенные на чертеже.

Построить комплексные чертежи точек: А(15,30,0), В(30,25,15), С(30,10,15), D(15,30,20)

На заданных линиях связи построить проекции точек В и С: точка В расположена выше точки А на 10мм и ближе к наблюдателю на 15мм; точка С расположена ниже точки А на 10мм и ближе к плоскости П2 на 5мм.


Метрические задачи