Позиционные и метрические задачи на плоскости Гранные поверхности Поверхности вращения Виды. Разрезы. Сечения Основные позиционные задачи Соединение части вида и части разреза Тела, ограниченные поверхностями вращения

Начертательная геометрия. Примеры выполнения задач

Задача №1

Построить комплексные чертежи точек: А(15,30,0), В(30,25,15), С(30,10,15), D(15,30,20)

Решение задачи разделим на четыре этапа.

1. А(15,30,0); xA= 15 мм; yA = 30мм; zA = 0.

Как Вы думаете, если у точки А координата zA=0, то какое положение она занимает в пространстве?

Рис. 1.1

Так выглядит комплексный чертеж точки А построенный по заданным координатам

Если у точки одна координата равна нулю, то точка принадлежит одной из плоскостей проекции. В данном случае у точки нет высоты: z = 0, следовательно точка А лежит в плоскости П1.

На комплексном чертеже оригинал (т.е. сама точка А) не изображается, есть только ее проекции.

2. В(30,25,15) и С(30,10,15).

На втором этапе объединим построение двух точек.

xB = 30мм; xC = 30мм

yB = 35мм; yC = 10мм

zB = 15мм; zC = 15мм

У точек В и С: xB = xC = 30мм, zB = zC = 15мм

а) Координаты х точек одинаковы, следовательно, в системе П1 – П2 проекции точек лежат на одной линии связи (рис. 1.2),

Рис. 1.2

б) Координаты z точек совпадают, (обе точки одинаково удалены от П1 на 15мм,) т.е. они расположены на одной высоте, следовательно на П2 проекции точек совпадают: В2 = (С2).

в) Для определения видимости относительно П2 смотрим на рис. 1.3. Наблюдатель видит точку В, которая закрывает собой точку С, т.е. точка В расположена ближе к наблюдателю, поэтому на П2 она видима. (См. М1 - 13 и 16).

Рис. 1.3

В системе П2П3 проекции точек также лежат на одной линии связи и видимость определяется по стрелке (рис. 1.2).

Точки В и С - называются фронтально конкурирующими.

3. D(15,30,20); xD = 15мм; yD = 30мм; zD = 20мм.

а) На этом комплексном чертеже (рис. 1.4) построены три проекции точки D(D1, D2, D3).

Все три координаты имеют числовые значения, отличные от нуля, поэтому точка не принадлежит ни одной плоскости проекций.

Рис. 1.4

б) Совместим пространственное изображение А и D (рис. 1.5). В системе П1-П2 проекции точек А и D лежат на одной линии связи, только точка D выше точки А, следовательно D - видима, а А - невидима (видима на П1 та точка, которая расположена выше)

Рис. 1.5

На четвертом, завершающем этапе, соединим все три фрагмента комплексных чертежей точек А,В,С,D в один общий.

Рис. 1.6

Точки А и D - называются горизонтально конкурирующими.

Рис. 1.7


Метрические задачи