Позиционные и метрические задачи на плоскости Гранные поверхности Поверхности вращения Виды. Разрезы. Сечения Основные позиционные задачи Соединение части вида и части разреза Тела, ограниченные поверхностями вращения

Начертательная геометрия. Примеры выполнения задач

Пример 1. Заданные окружности находятся с внешней стороны сопрягающей дуги (внешнее сопряжение) (рис.2.12).

Алгоритм построения:

Найти центр сопряжения О (рис. 2.13б). Для этого из О1 и О2 сделать засечки суммами радиусов: Rc + R1 и Rс + R2;

Найти точки сопряжения А и В (рис.2.13в). Соединить точку О с О1 и О2: ОО1; ОО2. На пересечении этих линий и сопрягаемых дуг отметить точки А и В.

Построить дуги сопряжения, т.е. радиусом Rс соединить точки А и В (рис.13.г).

Рис.2.13

Пример 2.Заданные окружности находятся внутри сопрягающей дуги (внутреннее сопряжение) (рис.2.14).

Алгоритм построения:

Найти центр сопряжения О (рис.2.14б). Для этого из О1 и О2 сделать засечки радиусами, равными разностям: Rс – R1; Rс – R2;

Найти точки сопряжения А и В (рис.2.14в). Для этого нужно соединить точку О с О1 и О2 и продолжить до пересечения с заданными окружностями: ОО1А; ОО2В.

Построить дугу сопряжения: радиусом Rс соединить точки А иВ.

 Рис.2.14

Пример 3. Одна из заданных окружностей находится с внешней стороны сопрягающей дуги, а вторая окружность - внутри сопрягающей дуги (смешанное сопряжение) (рис.2.15).

 Рис.2.15

2.5. Построение внешней касательной к двум окружностям

Последовательность построения следующая (рис.2.16):

1. Из центра большей заданной окружности проводим окружность радиусом равным R1-R2 (рис.2.16 б);

2. Через середину расстояния между центрами заданных окружностей проводим окружность радиусом, равным половине расстояния между этими окружностями (рис.2.16 в, г);

3.Находим точки пересечения этих окружностей А и В (рис.2.16 г);

4. Через центр заданной большей окружности и точки А и В проводим линии до окружности большего радиуса. Получаем точки С и D (рис.2.16д);

5.Из центра меньшей окружности проводим прямые , параллельные прямым, построенным в пункте 4, получаем точки Е и F (рис.2.16д);

6. Точки С, Е и точки D, F соединяем прямыми. Они расположены касательно к заданным окружностям (рис.2.16е).

7. Результат построения – на рис.2.16ж.

Рис.2.16

Вывод. Чтобы осуществить сопряжение линий нужно:

Найти центр сопряжения;

Определить точки сопряжения;

Провести сопрягающую дугу, строго от точки до точки.

2.6.Построение овала по двум осям

Последовательность построений (рис.2.17)

 1). Заданы большая АВ и малая СD оси овала (рис.2.17а);

 2).Соединим точки А и С. На этой прямой откладываем точку М: СМ=АО-ОС= СК (рис.2.17б);

 3).Отрезок АМ делим пополам , и из середины этого отрезка восстанавливаем перпендикуляр до пересечения с осями овала в точках О1 и О4 (рис.2.17в);

 4).Строим точки, симметричные точкам О1 и О4, получаем О2 и О3 (рис.2.17г);

 5).Проводим линии центров О1О3, О1О4, О2О3, О2О4 (рис.2.17д);

 6).Из центра О4 проводим дугу радиусом R1=О4С до пересечения с линиями центров О4О1 и О4О2 в точках 1 и 2. Аналогично находим точки 3 и 4 (рис.2.17е);

 7).Замыкающие дуги овала проводим из центров О1 и О2 радиусом R2=О1А (рис.2.17ж).

 8) Результаты построения – рис. 2.17з.

 Рис.2.17


Метрические задачи