Позиционные и метрические задачи на плоскости Гранные поверхности Поверхности вращения Виды. Разрезы. Сечения Основные позиционные задачи Соединение части вида и части разреза Тела, ограниченные поверхностями вращения

Начертательная геометрия. Примеры выполнения задач

Пример 3. Построить проекции конуса вращения Ф(i,l), у которого ось вращения занимает положение горизонтали. Линия а(а1) Ì F, а2 =? (рис. 2.22).

Для конусов вращения линия обреза задается окружностью.

Если ось вращения есть горизонталь или фронталь, то одна проекция окружности вырождается в отрезок прямой, перпендикулярный проекции оси и равный диаметру окружности. Другая проекция этой линии представляет собой эллипс. Большая ось эллипса занимает положение горизонтально проецирующей прямой. Малая ось эллипса занимает положение горизонтали.

 Рис. 2.22

Разница между большой и малой осями эллипса не должна быть слишком большой или слишком малой. Поэтому угол наклона проекции к оси вращения рекомендуется задавать от 35 до 47° . Для более точного задания эллипса необходимо построить не менее 12 точек.

Очерковые образующие конуса следует проводить касательными к эллипсу, точки К2 и - точки касания. Чтобы построить проекцию линии а(а1) на П2 (а2) на а1 отмечают несколько точек (чем больше, тем точнее будет построена кривая), проводят через них образующие и находят их проекции на соответствующих образующих на П2 (рис. 2.23). Главными точками являются точки, принадлежащие очерковым образующим : 1, 6 и 8 и точка 5 – наивысшая точка. Точка 6 является границей видимости линии а на П2.

Рис. 2.23

 

 

 

 

 

 

 

 

 

 

Пример 4. Построить проекции поверхности кольца L(i,l). Обозначить проекции горла n(n1, n2) и экватора m(m1,m2), А(А2), А1 =В(В1,) В2= ? (рис. 2.24).

Каждая точка образующей на П1, вращаясь вокруг оси i1 опишет траекторию окружности - параллель, фронтальная проекция параллели проецируется в прямую линию ^ i.

1. Строим проекции правого полумеридиана (рис. 2.25).

2.Достраиваем симметрично проекции левого полумеридиана (рис. 2.26).

Рис. 2.24

 Рис. 2.25 Рис. 2.26

3. Строим недостающие проекции точек А и В. Определяем видимость этих точек относительно П1 и П2, обозначаем проекции горла и экватора (рис. 2.27).

 

 Рис. 2.27

 

 

 

 

 

 

 

 

Построение проекций винтовых поверхностей.

 К винтовым поверхностям относятся прямой и наклонный геликоиды. При построении этих поверхностей следует помнить, что они являются линейчатыми и на комплексном чертеже задаются дискретным каркасом.

Пример 1. Построить проекции прямого геликоида. Геометрическая часть определителя прямого геликоида F (i, m), где i – ось, m - направляющая винтовая линия (рис. 2.28). Алгоритмическая часть определителя:

li Ç i, li Ç m, li ^ i, т.е. все образующие являются горизонтальными прямыми. Линия а(а2) Ì F , а1 =?

1. Дискретный каркас строим из 13 образующих, поэтому на горизонтальной проекции винтовой линии т берем 13 точек (рис. 2.29). Рис. 2.28

Строим горизонтальную проекцию линии a, принадлежащей поверхности (рис. 2.30). На a2 отмечаем точки, принадлежащие образующим, и находим их горизонтальные проекции. Между образующими 6 и 5, 7 и 6 проведены дополнительные образующие, так как образующая, проведенная из точки 6, занимает проецирующее положение. Таким образом находим горизонтальную проекцию линии а, кривую а1.

 Рис. 2.29 Рис. 2.30

4.2.4. Методические рекомендации к решению задачи № 3

Чтобы решить позиционную задачу, нужно ответить на три вопроса:

1. Что? Определить, что будет являться общим элементом пересекающихся геометрических фигур (точки, ломаная линия, контур из плоских кривых, пространственная кривая и т. д.).

2. Сколько? Нужно знать характер пересечения геометрических фигур (чистое проницание, частный случай проницания – касание, вмятие).

3. Как? Выбрать соответствующий алгоритм решения, т.е. определить расположение пересекающихся геометрических фигур относительно плоскостей проекций (1 алгоритм, 2 алгоритм или 3 алгоритм).

Примеры решения 2 ГПЗ в случае, когда одна из пересекающихся фигур проецирующая, вторая – непроецирующая. 2 алгоритм

Пример 1 . Построить проекции линии пересечения поверхностей сферы S и цилиндра вращения - L -. S Ç L = т (рис. 3.1).

Алгоритм решения:

S Ç L = т, 2 ГПЗ

L // П1, S – непроецирующая Þ 2 алгоритм

L // П1Þ m 1 =L1 ; m 2 Ì S2

Сначала строим две проекции сферы и недостающую проекцию цилиндра вращения (рис. 3.2).

 Рис. 3.1 Рис. 3.2

Вид пересечения – проницание. Значит, линий пересечения будет две:

S Ç L = m, . Обе поверхности являются поверхностями вращения второго порядка. Следовательно, при их пересечении получатся пространственные кривые второго порядка.

Решение.

Поверхность цилиндра L - проецирующая относительно П1, следовательно, горизонтальные проекции двух пространственных кривых линий пересечения совпадают с горизонтальной проекцией (главной проекцией) цилиндра

m1 , = L1

Фронтальные проекции обеих линий строим по принадлежности поверхности сферы.

1. Начинать построение фронтальных проекций линий пересечения следует с главных точек. Такими являются точки 1 и 7 как высшие и низшие точки, лежащие в общем осевом сечении поверхностей вращения (горизонтальная проекция); точки 2, и 8, как самые ближние и дальние; точки 5, и 11, как точки, лежащие на границе видимой и невидимой частей линий пересечения (рис. 3.3). Выбираем несколько промежуточных точек.

  Рис. 3.3

2. Для построения фронтальных проекций точек проводим окружности – параллели на поверхности сферы. Например, проводим окружность через точки 11 и 31 (рис. 3.4). Горизонтальная проекция такой окружности вырождается в отрезок прямой, перпендикулярный оси сферы. Радиусом, равным половине этого отрезка, строим ее фронтальную проекцию, которая на П2 изображается в истинном виде. Точки 12 и 32 принадлежат этой окружности.

 

 

 

 

 

Аналогично строим проекции всех остальных точек (и характерных и промежуточных) на П2.

Соединять построенные точки нужно в той же последовательности, что и на горизонтальной плоскости проекций, плавной кривой тонкой линией с последующей лекальной обводкой.

3. Решая вопрос видимости искомых линий относительно соответствующей плоскости проекций, надо помнить, что линии пересечения принадлежат обеим поверхностям одновременно. Поэтому видимыми будут те участки линий, которые лежат в зоне видимости обеих поверхностей относительно данной плоскости проекций (рис. 3.5).

Относительно П2 в зоне видимых точек будут лежать точки 11, 12, 1, 2, 3, 4, 5. Участки кривых, лежащих между точками 5, 6 и 10, 11, находятся в области видимых точек поверхности сферы, но невидимых точек поверхности цилиндра, поэтому будут невидимыми.

 

 Рис. 3.4

Рис. 3.5

Даны проекции геометрической части определителя. Построить проекции поверхности.

Пример Построить проекции линии пересечения поверхности эллипсоида вращения S с призматической поверхностью L

Пример. Построить проекции точек пересечения отрезка прямой а с поверхностью тора


Метрические задачи