Позиционные и метрические задачи на плоскости Гранные поверхности Поверхности вращения Виды. Разрезы. Сечения Основные позиционные задачи Соединение части вида и части разреза Тела, ограниченные поверхностями вращения

Начертательная геометрия. Примеры выполнения задач

Прямоугольная диметрия.

Прямоугольную диметрическую проекцию можно получить путем поворота и наклона координатных осей относительно П>¢ так, чтобы показатели искажения по осям X' и Z' приняли равное значение, а по оси Y'- вдвое меньшее. Показатели искажения "kx" и "kz" будут равны 0,94, а "ky"- 0,47.

На практике пользуются приведенными показателями, т.е. по осям X' и Z' откладывают натуральные размеры, а оси Y'- в 2 раза меньше натуральных.

Ось Z' обычно располагают вертикально, ось X'- под углом 7>°10¢ к горизонтальной линии, а ось Y'-под углом 41°25¢ к этой же линии (рис.12.17).

Проекции плоскости Способы задания плоскости на эпюре Из курса элементарной геометрии известно, что через три точки не лежащие на одной прямой можно провести плоскость и при том только одну. Таким образом, положение плоскости в пространстве логично определить (задать) тремя точками

Рис. 12.17

1. Строится вторичная проекция усеченной пирамиды.

2. Строятся высоты точек 1,2,3 и 4.

Рис. 10.18

Проще всего строить ось Х>¢, отложив на горизонтальной линии 8 равных частей и вниз по вертикальной линии 1 такую же часть.

Чтобы построить ось Y' под углом 41>°25¢ , надо на горизонтальной линии отложить 8 частей, а на вертикальной 7 таких же частей (рис.10.17).

На рисунке 10.18 изображена усеченная четырехугольная пирамида. Чтобы построение ее в аксонометрии было проще, ось Z должна совпадать с высотой, тогда вершины основания ABCD будут лежат на осях Х и Y (А С >Î х, В и D Î y). Сколько координат имеют точки 1 и ? Две. Какие? Х и Z.

Эти координаты откладываются в натуральную величину. Полученные точки 1>¢ и 3¢ соединяются с точками А¢ и С¢ .

Точки 2 и 4 имеют две координаты Z Y. Так как высота у них одинаковая, то координата откладывается на оси'. Через полученную точку 0>¢ проводится линия, параллельная оси Y, на которой по обе стороны от точки > откладываются расстояние 0141 уменьшенное в два раза.

Полученные точки 2>¢ и 4¢ соединяются с точками В¢ и D'.

10.4.1. Построение окружностей в прямоугольной диметрии.

Окружности, лежащие на плоскостях координат в прямоугольной диметрии, также как и изометрии, будут изображаться виде эллипсов. Эллипсы, расположенные между осями Х Y Z приведенной диметрии иметь большую ось, равную 1,06d, а малую - 0,35d, плоскости X ось тоже 0,95d (рис.10.19).

Эллипсы заменяются четырехцентовыми овалами, как в изометрии.

Рис.10.19

10.5.Косоугольная диметрическая проекция (фронтальная)

Если расположить координатные оси Х и Y параллельно плоскости П>¢, то показатели искажения по этим осям станут равным единице (к = т =1). Показатель искажения по оси Y обычно принимают равным 0,5. Аксонометрические оси X' и Z' составят прямой угол, ось Y' обычно проводят как биссектрису этого угла. Ось Х может быть направлена как вправо от оси Z', так и влево.

Предпочтительно пользоваться правой системой, так как удобнее изображать предметы в рассеченном виде. В этом виде аксонометрии хорошо чертить детали, имеющие форму цилиндра или конуса.

Рис. 10.20

Рис.10.21

Для удобства изображения этой детали ось Y надо совместить с осью вращения поверхностей цилиндров. Тогда все окружности будут изображаться в натуральную величину, а длина каждой поверхности будет уменьшаться два раза (рис.10.21).

Рис. 10.22

11.Наклонные сечения.

При выполнении чертежей деталей машин приходится нередко применять наклонные сечения.

При решении таких задач необходимо прежде всего уяснить: как должна быть расположена секущая плоскость и какие поверхности участвуют в сечении для того, чтобы деталь читалась лучше. Рассмотрим примеры.

Дана четырехгранная пирамида, которая рассекается наклонной фронтально-проецирующей плоскостью А-А (рис.11.1). Сечением будет четырехугольник.

Рис. 11.1

Сначала строим проекции его на П1 и П2 . Фронтальная проекция совпадает с проекцией плоскости, а горизонтальную проекцию четырехугольника по принадлежности пирамиде.

Затем строим натуральную величину сечения. Для этого вводится дополнительная плоскость проекций П4 , параллельная заданной секущей плоскости А-А, на нее проецируем четырехугольник, а затем совмещаем его с плоскостью чертежа.

Эта четвертая основная задача преобразования комплексного чертежа (модуль №4, стр.15 или №117 из рабочей тетради по начертательной геометрии).

Построения выполняются в следующей последовательности (рис.11.2):

1.На свободном месте чертежа проводим осевую линию, параллельную плоскости А-А.

2.Из точек пересечения ребер пирамиды с плоскостью проводим проецирующие лучи, перпендикулярно секущей плоскости. Точки 1 и 3 будут лежать на линии, расположенной осевой.

3.Расстояние между точками 2 и 4 переносится с горизонтальной проекции.

Аналогично строится истинная величина сечения поверхности вращения - эллипс.

Рис. 11.2

Расстояние между точками 1 и 5 -большая ось эллипса. Малую эллипса надо строить путем деления большой оси пополам (3-3).

Расстояние между точками 2-2, 3-3, 4-4 переносятся с горизонтальной проекции.

Рассмотрим более сложный пример, включающий многогранные поверхности и вращения (рис.11.3)

Задана четырехгранная призма. В ней расположены два отверстия: призматическое, расположенное горизонтально и цилиндрическое, ось которого совпадает с высотой призмы.

Секущая плоскость фронтально-проецирующая, поэтому фронтальная проекция сечения совпадает с проекцией этой плоскости.

Четырехугольная призма проецирующая к горизонтальной плоскости проекций, а значит и горизонтальная проекция сечения тоже есть на чертеже, она совпадает с проекцией призмы.

Натуральная величина сечения, в которое попадают обе призмы и цилиндр, строим на плоскости, параллельной секущей плоскости А-А (рис.11.3).

Последовательность выполнения наклонного сечения:

Проводится ось сечения, параллельно секущей плоскости, на свободном поле чертежа.

Строится сечение наружной призмы: длина его переносится с фронтальной проекции, а расстояние между точками горизонтальной.

Строится сечение цилиндра - часть эллипса. Сначала строятся характерные точки, определяющие длину малой и большой оси (54, 24 -24 ) ограничивающие эллипс (14 -14 ), затем дополнительные точки (44 -44 34 -34 ).

Строится сечение призматического отверстия.

Наносится штриховка под углом 45>° к основной надписи, если она не совпадает с линиями контура, а если совпадает, то угол штриховки может быть 30° или 60°. Плотность штриховки на сечении такая же, как на ортогональном чертеже.

Рис.11.3

Рис.11.4

Наклонное сечение можно поворачивать. При этом обозначение сопровождается знаком . Также разрешается показать половину фигуры наклонного сечения, если она симметрична. Подобное расположение наклонного сечения показано на рис.13.4. Обозначения точек при построении наклонного сечения можно не ставить.

На рис.11.5 дано наглядное изображение заданной фигуры с сечением плоскостью А-А.

Рис. 11.5

Контрольные вопросы

1. Что называют видом?

2. Как получают изображение предмета на плоскости?

3.Какие названия присвоены видам на основных плоскостях проекций?

4.Что называют главным видом?

5.Что называют дополнительным видом?

6. Что называют местным видом?

7.Что называют разрезом?

8. Какие обозначения и надписи установлены для разрезов?

9. В чем отличие простых разрезов от сложных?

10.Какая соблюдается условность при выполнении ломаных разрезов?

11. Какой разрез называется местным?

12. При каких условиях допускается совмещать половину вида и разреза?

13. Что называют сечением?

14. Как располагают сечения на чертежах?

15. Что называют выносным элементом?

16. Как упрощенно показывают на чертеже повторяющиеся элементы?

17. Как условно сокращают на чертеже изображение предметов большой длины?

18. Чем отличаются аксонометрические проекции от ортогональных?

19. Каков принцип образования аксонометрических проекций?

20. Какие установлены виды аксонометрических проекций?

21. Каковы особенности изометрии?

22. Каковы особенности диметрии?

Библиографический список

1. Суворов, С.Г.Машиностроительное черчение в вопросах и ответах: (справочник)/ С.Г.Суворов, Н.С.Суворова.-2-е изд. перераб. доп. - М.: Машиностроение,1992.-366с.

2. Федоренко В.А. Справочник по машиностроительному черчению/ В.А.Федоренко, А.И.Шошин,- Изд.16-стер.;м Перепеч. с 14-го изд.1981г.-М.: Альянс,2007.-416с.

3.Боголюбов, С.К.Инженерная графика: Учебник для сред. спец. учеб. заведений по техн. профиля/ С.К.Боголюбов.-3-е изд., испр. и доп.-М.: Машиностроение, 2000.-351с.

4.Вышнепольский, И.С.Техническое черчение е. Учеб. для нач. проф. образования/ И.С.Вышнепольский.-4-е изд., перераб. и доп.; Гриф МО.- М.: Высш. шк.: Академия, 2000.-219с.

5. Левицкий, В.С.Машиностроительное черчение и автоматизация выполнения чертежей: учеб. для втузов/В.С.Левицкий.-6-е изд., перераб. доп.; Гриф МО.-М.: Высш. шк., 2004.-435с.

6. Павлова, А.А. Начертательная геометрия: учеб. для вузов Павлова-2-е изд., перераб. и доп.; Гриф МО.- М.: Владос, 2005.-301с.

7. ГОСТ 2.305-68*. Изображения: виды, разрезы, сечения/Единая система конструкторской документации. - М.: Изд-во стандартов, 1968.

8. ГОСТ 2.307-68. Нанесение размеров и предельных отклонений/Единая система

конструкторской документации. - М.: Изд-во стандартов,1968.

Задача .Построить три вида детали с необходимыми разрезами и нанести размеры.

Рекомендации по выбору аксонометрических проекций Из ГОСТ2.317-70 и различных видов аксонометрических проекций рассмотрим ортогональные изометрию диметрию, а также косоугольную как наиболее часто применяющиеся.

При построении аксонометрии детали, ограниченной несколькими поверхностями, следует придерживаться следующей последовательности


Метрические задачи