Позиционные и метрические задачи на плоскости Гранные поверхности Поверхности вращения Виды. Разрезы. Сечения Основные позиционные задачи Соединение части вида и части разреза Тела, ограниченные поверхностями вращения

Начертательная геометрия. Примеры выполнения задач

ПОВЕРХНОСТИ

Образование поверхностей. Классификация

В начертательной геометрии образование поверхностей рассматривают как результат движения некоторой образующей линии по направляющей. И образующая, и направляющая могут быть прямыми или кривыми линиями. В зависимости от вида образующей и закона изменения направляющей получается та или иная поверхность.

Если образующей является прямая линия, то поверхность называется линейчатой. К линейчатым поверхностям относятся следующие:

конические – образованы перемещением образующей по некоторой направляющей, причем образующая имеет одну неподвижную точку, которая называется вершиной конической поверхности;

цилиндрические – образующая, перемещаясь по направляющей, всегда остается параллельной некоторой заданной прямой;

винтовые – прямолинейная образующая перемещается по винтовой линии, причем угол между образующей и осью вращения остается постоянным;

поверхности с плоскостью параллелизма – прямая перемещается по двум скрещивающимся линиям, оставаясь всегда параллельной некоторой плоскости, называемой плоскостью параллелизма. Среди поверхностей с плоскостью
параллелизма различают цилиндроиды – направляющими являются две скре-щивающиеся кривые; коноиды – направляющие – скрещивающиеся линии, но одна из них прямая; косая плоскость – направляющие – две скрещивающиеся прямые.

В качестве примера линейчатой поверхности на рис. 7.1, 7.2 приведены конус, цилиндр, прямой и наклонный геликоиды, косая плоскость. Если поверхности образованы вращением образующей вокруг некоторой прямой, то их называют поверхностями вращения.

 а б в

Рис. 7.1

Образующая поверхности вращения, лежащая в плоскости, проходящей через ось вращения, называется меридианом. Сечение поверхности плоскостью, перпендикулярной оси, является окружностью, его называют параллелью. Параллель с наименьшим радиусом называют горлом, с наибольшим – экватором (рис. 7.3).

 а б

Рис. 7.2

7.2. Задание и изображение поверхностей

на чертеже

Из всех возможных способов образования поверхности необходимо выбирать такие, которые являются наиболее простыми и более удобными для изображения или для решения данной задачи. Чтобы задать поверхность на комплексном чертеже, достаточно иметь на нем такие элементы поверхности, которые позволяют построить каждую ее точку. Совокупность этих элементов поверхности называют определителем поверхности.

Часто поверхность задается проекциями своих направляющих и указывается способ построения ее образующих. Для придания чертежу большей наглядности в большинстве случаев на нем строят еще и очерк поверхности. Очерком поверхности называют проекции контурной линии.

Приведем примеры изображения некоторых поверхностей.

1. Пусть поверхность (однополостный гиперболоид) задана на чертеже (рис. 7.4) определителем: образующая l вращается вокруг скрещивающейся с ней осью i. Требуется построить очерк этой поверхности.

Решение выполним на рис. 7.5. При вращении прямой l вокруг оси i все точки прямой опишут окружности различных радиусов. Возьмем на прямой четыре точки и построим проекции окружностей при их вращении. Точка А вращается по окружности наименьшего радиуса АО, т. е. эта окружность является горлом поверхности. Точки В и С в рассматриваемом примере вращаются по окружности одинакового радиуса. Произвольная точка М выбрана между горлом и верхним основанием этой поверхности. На горизонтальной проекции очерком поверхности будет являться окружность. На фронтальной, соединив крайние точки проекции окружностей точек, получим очерк, представляющий собой ветви гиперболы. Таким образом, построены проекции однополостного гиперболоида.

  Рис. 7.4 Рис. 7.5

По классификации эта поверхность может быть отнесена и к линейчатым (образующая – прямая), и к нелинейчатым (образующая – гипербола).

Построить проекции цилиндра вращения. Решение – поверхность образована вращением прямой вокруг параллельной ей оси (рис. 7.6).

Построить проекции конуса вращения. Решение – поверхность образована вращением прямой вокруг пересекающейся с ней оси (рис. 7.7).

 

 Рис. 7.6 Рис. 7.7 Рис. 7.8

Построить проекции тора. Решение – поверхность образована вращением окружности вокруг оси i, не проходящей через ее центр (рис. 7.8).

Построить проекции эллипсоида. Решение – поверхность образована вращением эллипса вокруг оси (рис. 7.9).

Построить проекции параболоида. Решение – поверхность образована вращением параболы вокруг оси i (рис. 7.10).

  

 Рис. 7.9 Рис. 7.10 Рис. 7.11

Построить проекции двуполостного гиперболоида вращения. Реше-
ние – поверхность образована вращением гиперболы вокруг ее действительной
оси i (рис. 7.11).

Более подробные сведения о классификации и изображении поверхностей можно получить в работах [1 – 4].

7.3. Пересечение поверхностей плоскостью

Линия пересечения поверхности с плоскостью представляет собой плос-кую замкнутую линию, которая может быть плоской замкнутой ломаной прямой в случае пересечения многогранников. Линия определяется минимальным, но достаточным количеством точек, принадлежащих этой линии. Поверхность конуса вращения изображена на рис. 7.12. При различном наклоне секущей плоскости по отношению к оси конуса и образующим линия сечения представляет собой окружность, эллипс, гиперболу, параболу, пару прямых. При построении проекций эллипса достаточно иметь проекции точек, определяющие большую и малую оси. При построении параболы, гиперболы достаточно иметь проекции пяти точек, включая точки их вершин. При построении окружности необходимо знать ее центр и радиус. При построении линии пересечения многогранников необходимо определять точки пересечения ребер одного с гранями другого.

 При определении линии пересечения поверхности плоскостью желательно иметь плоскость в проецирующем положении. С этой целью, при необходимости, выполняют преобразования комплексного чертежа. Тогда на одной из плоскостей проекции линия пересечения уже имеется, а на другой ее нужно определить из условия принадлежности точки поверхности. Это условие формулируется так: точка принадлежит поверхности, если принадлежит линии, лежащей в этой поверхности.

П р и м е р 1. Построить проекции сечения конуса вращения плоскостью Σ2 (рис. 7.13).

Р е ш е н и е. Так как плоскость Σ является фронтально проецирующей и пересекает все образующие конуса, то в сечении получается эллипс.

На фронтальной плоскости проекций эллипс совпадает с Σ2. Крайние точки А и В являются большой осью эллипса. На средине отрезка АВ находится малая ось эллипса СD. Решение задачи сводится к определению горизонтальных проекций точек А, В, С, D. Проекции А1 и В1 определены из условия, что эти точки принадлежат очерковым образующим конуса, их горизонтальные проекции совпадают с горизонтальной штрихпунктирной линией.

 Чтобы определить проекции точек С1, D1, через проекции точек C2, D2 проводим параллель, т. е. окружность, на которой лежат точки С, D. По большой и малой осям эллипса строится овал с помощью циркуля или лекала [5].

 П р и м е р 2. Построить проекции линии сечения сферы проецирующей плоскостью Σ (рис. 7.14).

 Р е ш е н и е. Так как плоскость фронтально проецирующая, то на П2 линия сечения уже есть, она совпадает с Σ2. Линия сечения представляет собой окружность, не параллельную П2, поэтому проекция этой окружности на П1 будет представлять собой эллипс. Чтобы построить этот эллипс, необходимы проекции точек большой и малой осей. Отрезок А2В2 является диаметром окружности в натуральную величину, т. е. фронталью, тогда А1В1 является малой осью эллипса. Проекции точек С2D2, лежащие на середине [А2В2], являются сопряженным диаметром фронтально проецирующего положения. Следовательно, С1D1 = [СD] = dопр является большой осью эллипса. По большой и малой осям можно построить эллипс, но полезно предварительно построить точки смены видимости Е и F, которые лежат на экваторе. Линия эллипса слева от Е1 и F1 невидима, так как она находится под сферой.

 П р и м е р 3. Построить проекции линии сечения поверхности конуса плоскостью общего положения (аh) (рис. 7.15).

 Р е ш е н и е. Преобразуем плоскость общего положения в проецирующую способом замены плоскостей проекций. Для этого перпендикулярно горизонтали h1 проводим координатную ось П1/П4 и на П4 строим проекции плоскости и конуса, отмечаем большую ось А4В4 и малую С4≡D4. По принадлежности определяем проекции точек А1, В1, С1, D1, затем с условием видимости –
А2, В2, С2, D2.

Рис. 7.15

7.4. Пересечение поверхностей с прямой

 Универсальным способом определения точек пересечения прямой с поверхностью является способ вспомогательных секущих плоскостей, суть которого заключается в следующем: чтобы определить точки пересечения прямой с поверхностью, необходимо через прямую провести проецирующую плоскость, построить линию пересечения этой плоскости с поверхностью и отметить точки пересечения этой линии с прямой, которые и являются точками пересечения прямой с поверхностью.

 П р и м е р 1. Построить точки пересечения поверхности вращения (тора) с прямой l (рис. 7.16).

 Р е ш е н и е. Через проекцию прямой l2 проводим фронтально проецирующую плоскость Σ и строим на П1 проекцию линии пересечения этой плоскости с тором. Отмечаем точки пересечения этой линии с прямой l – М1 и N1. По принадлежности находим фронтальные проекции точек М2N2, определяем видимость этих точек и затем – всей прямой l.

 Иногда рациональнее определять точки пересечения некоторых поверхностей с прямой с помощью преобразования комплексного чертежа.

 П р и м е р 2. Построить пересечение сферы с прямой (рис. 7.17).

 Р е ш е н и е. Через l1 проводим горизонтально проецирующую плос-
кость t. Плоскость пересекает сферу по окружности t1 с центром О. Параллельно плоскости окружности проводим ось П1/П4, из О1 – линию связи перпендикулярно П1/П4, определяем О4 и радиусом окружности проводим ее на П4. Строим проекцию и отмечаем точки М4 и N4, которые являются точками пересечения прямой со сферой. По принадлежности, с учетом видимости, определяем проекции точек М1, N1 и М2, N2.

 

 Рис. 7.16 Рис. 7.17

  П р и м е р 3. Построить точки пересечения поверхности кругового цилиндра с прямой l (рис. 7.18).

Р е ш е н и е. Поверхность цилиндра можно представить в проецирующем положении, для чего достаточно заменить плоскость проекций П1 на П5. Построить проекции цилиндра и прямой, отметить точки М5 и N5, затем по принадлежности, с учетом видимости, – М2, N2, и М1, N1.

 При построении точек пересечения прямой с эллиптическими цилиндрической или конической поверхностями целесообразно проводить вспомогательные плоскости через прямую параллельно образующим цилиндра или через вершину конуса соответственно. В этом случае плоскости пересекают эти поверхности по образующим; там, где эти образующие пересекают прямую, и находятся точки пересечения прямой с поверхностью. Образующие определятся при пересечении следа плоскости с основанием цилиндра (конуса).

 П р и м е р 4. Определить точки пересечения прямой l с поверхностью наклонного эллиптического конуса (рис. 7.19).

 Р е ш е н и е. Через две произвольные точки прямой 1, 2 и вершину
конуса S проводим прямые. Определяем горизонтальный след полученной плоскости. Из точек пересечения следа плоскости и основания конуса проводим образующие. Отмечаем точки пересечения образующих и прямой – М1, N1 и М2, N2, которые и являются точками пересечения прямой l и конуса.

 П р и м е р 5. Определить точки пересечения прямой l с поверхностью наклонного эллиптического цилиндра (рис.7.20).

 Р е ш е н и е. Через две произвольные точки прямой 1, 2 проводим прямые параллельно образующим цилиндра. Определяем горизонтальный след полученной плоскости. Из точек пересечения горизонтального следа и основания цилиндра проводим образующие. Отмечаем точки пересечения образующих и прямой – М1, N1, M2, N2, которые и являются точками пересечения прямой l и цилиндра.

Рис. 7.20

7.5. Взаимное пересечение поверхностей

7.5.1. Пересечение многогранников

  Линия пересечения в общем случае является замкнутой пространственной ломаной прямой. Определяется точками пересечения ребер одного многогранника с гранями другого. Точки пересечения ребер с гранями объединяются в звенья. Звено считается видимым, если принадлежит видимым граням. В случае, когда один многогранник – призма, целесообразно на чертеже ее представить в проецирующем положении. Пример построения линии пересечения пирамиды и призмы приведен на рис. 7.21. Так как призма горизонтально проецирующего положения, то на плоскости П1 проекция линии пересечения уже есть, она обозначена точками пересечения ребер пирамиды с гранями призмы – 11, 21, 31 и 41, 51, 61, 71, 81. Линия пересечения в приведенном примере представляет собой два замкнутых контура. Один из них – плоская фигура (треугольник с вершинами, обозначенными точками 1 – 3), второй – прост-ранственный пятиугольник (точки 4 – 8).

 Фронтальные проекции линии пересечения определяются по принадлежности точек 1, 2, 3, 4, 5, 7 ребрам пирамиды, а точек 6 и 8 – граням пирамиды АВ и ВС соответственно, для чего через точки 61 и 81 в этих гранях проводятся прямые l и l'.

7.5.2. Пересечение многогранника с криволинейной поверхностью

  Линия пересечения в общем случае представляет собой замкнутую пространственную ломаную кривую, которая определяется пересечением граней многогранника с криволинейной поверхностью. Если одна из поверхностей является призмой или цилиндром, то для решения на чертеже их удобно представить в проецирующем положении.

 П р и м е р. Дан конус, имеющий призматическое отверстие, образованное четырьмя фронтально проецирующими гранями. Требуется определить линию пересечения (рис. 7.22).

  Р е ш е н и е. Так как грани отверстия фронтально проецирующие, то проекция линии пересечения на П2 уже имеется (совпадает с самими проекциями этих граней). Чтобы определить горизонтальную проекцию линии пересечения, достаточно построить проекции линий от этих четырех граней отверстия. Начнем с верхней грани. Эта грань параллельна основанию кругового конуса, поэтому она его пересекает по части окружности, ограниченной слева точками 1 и 2. Радиус этой дуги по величине соответствует отрезку от осевой конуса до точки на очерковой образующей конуса (R). Вторая грань представляет собой плоскость, пересекающую конус по параболе. Для ее построения достаточно продолжить грань до пересечения с очерковой образующей конуса – получить вершину параболы (точка 3) и определить точки 4 и 5 из условия принадлежности точки поверхности. Пересечение третьей грани с конусом дает часть гиперболы, ограниченную точками 4, 5 и 6, 7. Горизонтальная проекция этой гиперболы будет представлять собой отрезки [41, 51] и
[61, 71].

 Четвертая грань параллельна основанию, поэтому горизонтальная проекция линии пересечения проецируется в натуральную величину (частью окружности радиуса R').

 Пример построения линии пересечения цилинд-ра и пирамиды приведен в работе [1, с. 54].

7.5.3. Взаимное пересечение криволинейных
поверхностей

  Линия пересечения в общем случае – замкнутая пространственная плавная кривая. Она определяется опорными точками (точками, имеющими на чертеже хотя бы по одной проекции), экстремальными (наиболее удаленными), точками смены видимости, при необходимости – промежуточными точками.

 П р и м е р. Определить линию пересечения поверхности конуса и цилиндра (рис. 7.23).

Р е ш е н и е. Так как цилиндр является поверхностью фронтально проецирующего положения, то горизонтальная проекция этой линии уже есть, она совпадает с проекцией цилиндра. Проекцию цилиндра на П1 определяем из условия принадлежности точки поверхности. Вначале определим опорные точки – 1, 5, 5', 6, затем – экстремальные – 3, 3', которые будут и точками смены видимости, после этого – промежуточные – 2, 2', 4, 4'. Недостающие проекции экстремальных и промежуточных точек определяем с помощью параллелей, приведенных на поверхности конуса. Пример построения цилиндра и конуса приведен в работе [1, с. 136].

 Для некоторых поверхностей, состоящих из конуса и пирамид, линию их пересечения целесообразно определить с помощью “связки” плоскостей. Для этого через вершины этих поверхностей проводят ряд секущих плоскостей, пересекающих поверхности по образующим конуса и по прямым (в гранях пирамиды). Пересечение этих прямых, принадлежащих разным поверхностям, дает общие точки, по которым строят линию пересечения [1, с. 134].

 Пересечение цилиндрической и конической поверхностей целесообразно определить с помощью так называемых “вращающихся” вспомогательных плоскостей [1, с. 54]. Линию пересечения эллиптических цилиндров удобно определять с помощью “пучка” параллельных секущих плоскостей [1, с. 138].


Метрические задачи