Позиционные и метрические задачи на плоскости Гранные поверхности Поверхности вращения Виды. Разрезы. Сечения Основные позиционные задачи Соединение части вида и части разреза Тела, ограниченные поверхностями вращения

Начертательная геометрия. Примеры выполнения задач

Основные позиционные задачи

В начертательной геометрии часто возникает необходимость решать практические задачи, связанные с определением взаимного расположения геометрических элементов относительно друг друга, например, нужно определить принадлежность элементов, параллельность, пересечение и т. д. Такие задачи называются позиционными, а решение их основано на свойствах ортогонального проецирования. Рассмотрим решение названных задач в последовательности от простых элементов к сложным, т. е. от точек – к прямым и плоскостям.

4.1. Взаимное расположение двух точек

Положение точки на чертеже определяется координатами. Точка расположена выше другой, если у нее больше координата Z. Точка находится ближе к наблюдателю, если у нее большая координата Y. От профильной плоскости проекции дальше удалена та точка, у которой больше координата Х.

Практический интерес вызывают точки, расположенные на одном перпендикуляре к плоскости проекций (рис. 4.1). Такие точки на чертеже называются конкурирующими. По ним определяется видимость элементов на чертеже. Из двух конкурирующих точек видимой считается та, у которой больше координата на другой плоскости проекций.

В данном случае видимой на фронтальной плоскости проекций будет точка b, так как у нее больше координата Y.

  Рис. 4.1 Рис. 4.2

4.2. Взаимное расположение прямой и точки

Точка принадлежит прямой, если ее проекции принадлежат одноименным проекциям прямой (рис. 4.2).

4.3. Взаимное расположение двух прямых

Прямые относительно друг друга могут быть параллельными (рис. 4.3, а), пересекающимися (б), скрещивающимися (в).

 а б в

Рис. 4.3

4.4. Взаимное расположение точки и плоскости

Точка принадлежит плоскости, если она принадлежит прямой, лежащей в этой плоскости.

П р и м е р. Плоскость задана следами (h0f 0). Требуется построить точку А, принадлежащую этой плоскости (рис. 4.4).

Р е ш е н и е. Так как в плоскости можно построить бесчисленное множество точек, принадлежащих этой плоскости, то на одной из плоскостей проекций произвольно ставим одну проекцию точки (например, А2), но вторую проекцию А1 находим из условия принадлежности точки плоскости. Для этого через А проводим прямую, т. е. через А2 проводим h2 до пересечения с f 0, определяем горизонтальную проекцию точки 1 и из 11 параллельно горизонтальному следу проводим h1, на которой и отмечаем А1.

4.5. Взаимное расположение прямой и плоскости

Прямая принадлежит плоскости, если имеет две общие точки или одну общую точку и параллельна какой-либо прямой, лежащей в плоскости. Пусть плоскость на чертеже задана двумя пересекающимися прямыми. В данной плоскости требуется построить две прямые m и n в соответствии с этими условиями (Г (аb)) (рис. 4.5).

Р е ш е н и е. 1. Произвольно проводим m2, так как прямая принадлежит плоскости, отмечаем проекции точек пересечения ее с прямыми а и b и определяем их горизонтальные проекции, через 11 и 21 проводим m1.

2. Через точку К плоскости проводим n2║m2 и n1║m1.

Прямая параллельна плоскости, если она параллельна какой-либо прямой, лежащей в плоскости.

Пересечение прямой и плоскости. Возможны три случая расположения прямой и плоскости относительно плоскостей проекций. В зависимости от этого определяется точка пересечения прямой и плоскости.

Первый случай – прямая и плоскость – проецирующего положения. В этом случае точка пересечения на чертеже имеется (обе ее проекции), ее нужно только обозначить.

П р и м е р. На чертеже задана плоскость следами Σ (h0  f 0) – горизонтально проецирующего положения – и прямая l – фронтально проецирующего положения. Определить точку их пересечения (рис. 4.6).

Точка пересечения на чертеже уже есть – К(К1К2).

Второй случай – или прямая, или плоскость – проецирующего положения. В этом случае на одной из плоскостей проекций проекция точки пересечения уже имеется, ее нужно обозначить, а на второй плоскости проекций – найти по принадлежности.

а б

Рис. 4.7

П р и м е р ы. На рис. 4.7, а изображена плоскость следами фронтально проецирующего положения и прямая l – общего положения. Проекция точки пересечения К2 на чертеже уже имеется, а проекцию К1 необходимо найти по принадлежности точки К прямой l. На
рис. 4.7, б плоскость общего положения, а прямая m – фронтально проецирующего, тогда К2 уже есть (совпадает с m2), а К1 нужно найти из условия принадлежности точки К плоскости. Для этого через К проводят
прямую (h – горизонталь), лежащую в плоскости.

Третий случай – и прямая, и плоскость – общего положения. В этом случае для определения точки пересечения прямой и плоскости необходимо воспользоваться так называемым посредником – плоскостью проецирующей. Для этого через прямую проводят вспомогательную секущую плоскость. Эта плоскость пересекает заданную плоскость по линии. Если эта линия пересекает заданную прямую, то есть точка пересечения прямой и плоскости.

П р и м е р ы. На рис. 4.8 представлены плоскость треугольником АВС – общего положения – и прямая l – общего положения. Чтобы определить точку пересечения К, необходимо через l провести фронтально проецирующую плоскость Σ, построить в треугольнике линию пересечения Δ и Σ (на чертеже это отрезок 1,2), определить К1 и по принадлежности – К2. Затем определяется видимость прямой l по отношению к треугольнику по конкурирующим точкам. На П1 конкурирующими точками взяты точки 3 и 4. Видима на П1 проекция точки 4, так как у нее координата Z больше, чем у точки 3, следовательно, проекция l1 от этой точки до К1 будет невидима.

На П2 конкурирующими точками взяты точка 1, принадлежащая АВ, и точка 5, принадлежащая l. Видимой будет точка 1, так как у нее координата Y больше, чем у точки 5, и следовательно, проекция прямой l2 до К2 невидима.

На рис. 4.9 изображены плоскость общего положения (задана следами) и прямая m также общего положения. Чтобы определить точку пересечения m и плоскости, надо через m2 провести Σ2 – фронтально проецирующую плоскость, построить линию пересечения двух плоскостей (отрезок 1,2), отметить К1 и по принадлежности этой точки прямой l определить К2.

4.6. Взаимное пересечение двух плоскостей

Первый способ построения линии пересечения двух плоскостей состоит в следующем. Вводят вспомогательную плоскость Г (рис. 4.10), строят линии пересечения вспомогательной плоскости с двумя заданными и при пересечении построенных линий находят общую точку К двух заданных плоскостей. Для нахождения второй общей точки К' построение повторяют с помощью второй вспомогательной плоскости Г'.

В качестве вспомогательных плоскостей обычно берут плоскости частного положения – плоскости уровня относительно плоскостей проекции (горизонтальные, фронтальные) или проецирующие (перпендикулярные к плоскостям).

Рис. 4.10

Для построения линии пересечения двух плоскостей можно использовать точки пересечения двух прямых, принадлежащих одной из плоскостей, с другой плоскостью. Для этого точку пересечения прямой с плоскостью строят, как это указано в подразд. 4.5, т. е. через заданную прямую проводят вспомогательную проецирующую плоскость, строят пересечения вспомогательной и заданной плоскостей, в пересечении построенной линии с заданной прямой отмечают искомую точку. Определим линию пересечения двух треугольников вторым из указанных выше способов (рис. 4.11). Точка пересечения прямой КЕ с плоскостью треугольника АВС – М – найдена с помощью вспомогательной фронтально проецирующей плоскости Ф, фронтальный след которой совпадает с К2Е2. Вспомогательная плоскость пересекается с плоскостью треугольника АВС по линии 1-2. Пересечение горизонтальных проекций этой линии и прямой КЕ – М1 – является горизонтальной проекцией первой точки линии пересечения заданных плоскостей, ее фронтальная проекция построена по принадлежности прямой КЕ.

Аналогичным способом найдена и точка N, которая является точкой пересечения прямой ВС с плоскостью треугольника DЕК. Разница только в том, что в качестве вспомогательной взята горизонтально проецирующая плос-
кость Г, горизонтальный след которой совпадает с В1С1. Эта плоскость пересекает треугольник DЕК по линии 3-4. Пересечение фронтальных проекций этой линии и прямой ВС – точка N2 – является фронтальной проекцией искомой точки, ее горизонтальная проекция находится по принадлежности прямой ВС.

Видимость геометрических элементов на комплексном чертеже определяется с помощью конкурирующих точек, проекции которых на какую-либо плоскость проекции совпадают. Из двух горизонтально конкурирующих точек на П1 видна будет та, у которой больше высота, т. е. координата Z, а из двух фронтально конкурирующих видима та, у которой больше координата Y.

Видимость плоскостей треугольников на горизонтальной плоскости проекций определена с помощью горизонтально конкурирующих точек 3 и 5, а на фронтальной – с помощью фронтально конкурирующих точек 2 и 6. Точка 3 расположена выше точки 5 (координата Z у нее больше), поэтому она будет видимой на П1. Так как эта точка принадлежит прямой KD, то и прямая будет видимой.

На фронтальной проекции видимой будет прямая KE, так как принадлежащая ей точка 6 видимая – она расположена ближе к наблюдателю (координата Y у нее больше), чем конкурирующая с ней точка 2.

5. ПРЕОБРАЗОВАНИЕ КОМПЛЕКСНОГО ЧЕРТЕЖА

Преобразования комплексного чертежа необходимы для решения позиционных и метрических задач. Преобразования осуществляются двумя принципиальными способами: заменой плоскостей проекций или изменением положения предмета относительно плоскостей проекций. Здесь будет рассмотрен только первый способ преобразования.

Все преобразования комплексного чертежа можно свести к решению четырех основных задач:

1) прямая общего положения преобразуется на чертеже в прямую уровня;

2) прямая уровня преобразуется в проецирующую прямую;

3) плоскость общего положения преобразуется в плоскость проеци-
рующую;

4) плоскость проецирующая преобразуется в плоскость уровня.

5.1. Способ замены плоскостей проекций

Сущность способа заключается в том, что на чертеже вводится новая плоскость проекций таким образом, что предмет по отношению к ней занимает частное положение.

Рассмотрим применение этого способа к решению четырех основных задач на преобразование.

П е р в а я з а д а ч а: прямая общего
положения преобразуется в прямую уровня (рис. 5.1).

Чтобы преобразовать прямую AB общего положения в прямую уровня, необходимо ввести новую плоскость проекций параллельно АВ, т. е. на чертеже провести новую координатную ось параллельно А1В1 или А2В2. В рассматриваемом случае координатная ось П1 проведена параллельно А1В1, таким образом введена новая фронтальная плоскость проекций. Для построения проекции отрезка на этой плоскости нужно из А1 и В1 провести линии связи, перпендикулярные координатной оси П1/П4.

Так как высота прямой в пространстве не изменилась, то от оси П1/П4 на соответствующих линиях связи откладываем высоту точек А и В, получаем А4 и В4. Проекции прямой А1В1 и А4В4 дают положение прямой АВ, параллельное новой фронтальной плос-
кости проекций. Проекция А4В4 – натуральная величина отрезка АВ. Угол между натуральной величиной прямой и горизонтальной проекцией – это угол наклона АВ к горизонтальной плоскости проекций П1. Если есть необходимость определить угол наклона прямой АВ к фронтальной плоскости проекций, тогда координатную ось П2/П5 необходимо провести параллельно А2В2 и на линиях связи от этой оси отложить Ау и Ву.

Угол между натуральной величиной и фронтальной проекцией и есть угол (β) наклона прямой АВ к П2.

Часто для определения натуральной величины отрезка и углов наклона прямой к плоскостям проекций пользуются способом прямоугольного треугольника, который является следствием из решения первой задачи на преобразование (рис. 5.2).

Натуральная величина отрезка есть гипотенуза прямоугольного треугольника, один катет которого – сама проекция отрезка, другой катет по величине является разностью координат концов отрезка, взятой на другой плоскости проекций.

В т о р а я з а д а ч а: прямая уровня преобразуется в прямую проецирующую (рис. 5.3).

Для решения этой задачи необходимо новую плоскость проекций провести перпендикулярно натуральной величине прямой А1В1. Проекции А1В1 и А4В4 дают положение прямой АВ, перпендикулярное новой фронтальной плоскости проекций П4.

Т р е т ь я и ч е т в е р т а я з а д а ч и: плоскость общего положения преобразуется в плоскость проецирующую, и плоскость проецирующая – в плоскость уровня.

Решение этих двух задач приведено на рис. 5.4. Пусть дана плоскость общего положения – задана треугольником АВС. Чтобы преобразовать ее в проецирующую, нужно ввести новую плоскость проекций перпендикулярно треугольнику АВС, но на комплексном чертеже это возможно в том случае, если провести плоскость проекций перпендикулярно линиям уровня или следам плоскости.

С этой целью проведем в плоскости треугольника АВС горизонталь. Перпендикулярно h1 проведем координатную ось (П1/П2). Прямая уровня h преобразовалась в прямую проецирующую h(h1h4). Из проекции вершин треугольника А1,В1,С1 проведем линии связи и от (П1/П4) отложим соответствующие координаты А2,В2,С2. Проекция треугольника А4,В4,С4 представляет собой прямую линию.

Рис. 5.4

Таким образом, плоскость общего положения преобразована в плоскость проецирующую. Угол между проекцией треугольника А4В4С4 и координатной осью   является углом наклона плоскости к П1.

Для преобразования проецирующей плоскости в плоскость уровня (решение четвертой задачи на преобразование), необходимо построить новую плоскость проекций параллельно проекции треугольника А4В4С4, провести линии связи и отложить координаты точек, взятые из П1, т. е. от оси П1/П4 до А1,В1,С1. Проекция треугольника А5В5С5 является натуральной величиной треугольника АВС.

Начертательную геометрию из других разделов геометрии выделяет то, что по плоскому изображению предмета можно изучить его геометрические формы, размеры, расположение в пространстве. Эта возможность появляется благодаря применяемым в начертательной геометрии методам проецирования предметов на плоскость.

Определение расстояний Между двумя точками. Решение сводится к определению натуральной величины отрезка способом прямоугольного треугольника.

Образование поверхностей. Классификация В начертательной геометрии образование поверхностей рассматривают как результат движения некоторой образующей линии по направляющей. И образующая, и направляющая могут быть прямыми или кривыми линиями. В зависимости от вида образующей и закона изменения направляющей получается та или иная поверхность.


Метрические задачи