Позиционные и метрические задачи на плоскости Гранные поверхности Поверхности вращения Виды. Разрезы. Сечения Основные позиционные задачи Соединение части вида и части разреза Тела, ограниченные поверхностями вращения

Начертательная геометрия. Примеры выполнения задач

Кривые поверхности. Поверхности вращения

Кривыми называются поверхности, у которых по крайней мере либо образующая, либо направляющая представляют собой кривую линию.

В промышленности, особенно машиностроении, наиболее объемный класс составляют поверхности вращения.

Поверхности вращения

Пусть произвольная линия AGEB вращается вокруг оси i. Тогда она образует поверхность вращения (рис. 4.1).

Рис. 4.1. Образование поверхности вращения.

Линия пересечения поверхности вращения плоскостью, проходящей через ось i, называется меридианом (например A*G*E*B*). Меридиан, лежащий в плоскости, параллельной П2, называется главным. Линия пересечения поверхности вращения плоскостью, перпендикулярной оси i, называется параллелью. Таковыми являются направляющие, проходящие через точки АА*, ВВ*, ЕЕ*, GG*. Параллель, проходящая через наиболее удаленную от оси точку Е образующей, называется экватором, а через самую близкую точку G – горлом. Очевидно, что все параллели представляют собой окружности.

Одной из самых простых поверхностей вращения является цилиндр. Цилиндрическая поверхность образуется при вращении прямой (образующей) АВ вокруг оси (рис. 4.2, а). Образование цилиндрической поверхности подобно получению призматической с той лишь разницей, что у гранной поверхности направляющей является ломаная линия.

Рис. 4.2. Образование поверхности цилиндра, конуса, сферы.

В случае образования конической поверхности прямая AS, вращающаяся вокруг оси, закреплена в некоторой точке S на оси (рис. 4.2, б). Такая поверхность подобна пирамидальной, у которой образующей является тоже прямая, но перемещающаяся по ломаной линии. Для того, чтобы получить цилиндр или конус, надо соответствующую поверхность ограничить плоскостями основания.

Если в качестве образующей выбираем окружность, то при ее вращении вокруг оси получаем:

— сферу, когда ось вращения проходит через центр О окружности (рис. 4.2, в);

— тор, в противном случае (рис. 4.3).

Если ось вращения проходит через образующую–окружность, тор получается закрытым (рис. 4.3, а), в противном случае-открытым (рис. 4.3, б). Примером открытого тора может служить бублик, закрытого – яблоко либо лимон.

Рис. 4.3. Образование поверхности тора.

Принадлежность точки и линии поверхности

Рассмотрим построение проекций точки и линии последовательно на перечисленных выше поверхностях вращения.

Цилиндр

Пусть задан прямой цилиндр, плоскости основания которого параллельны плоскости П1 (рис. 4.4).

Решим задачу. Зная фронтальные проекции точек А и В, лежащих на боковой поверхности цилиндра, построить отсутствующие проекции. Поскольку на П1 боковая поверхность цилиндра проецируется в окружность, то А1 и В1 лежат, очевидно, на ней. Их положение находим по вертикальным линиям связи.

Профильные проекции А3, В3 лежат, как известно, на горизонтальных линиях связи с фронтальными проекциями А2 и В2. При этом, в соответствии с правилами ортогонального проецирования, расстояние от Ф3 до профильной проекции точки равно расстоянию от Ф1 до горизонтальной проекции точки. Причем точка В3 – невидимая, так как лежит на невидимой части боковой поверхности цилиндра.

Решим следующую задачу: по заданной фронтальной проекции А2В2 линии (рис. 4.4) построим отсутствующие проекции.

Подпись: Рис. 4.4. Построение проекций точек и линии на поверхности цилиндра

Горизонтальная проекция А1В1 совпадает с окружностью, так как все точки линии АВ лежат на боковой поверхности цилиндра.

При построении профильной проекции А3В3 следует иметь в виду, что линия АВ пересекает прямую СD, которая на П3 является контуром С3D3 цилиндра. Поэтому сначала следует определить положение контурной точки 13, а затем соединить точки А3 и В3 линией, которая в отличии от А212В2 не является прямой. В связи с этим для построения необходимо на А212В2 выбрать несколько промежуточных точек (22, 32 и т.д.) и построить их профильные проекции (23, 33 и т.д.), руководствуясь вышеуказанным правилом взаимосвязи горизонтальной и профильной проекций. Чем большее количество промежуточных точек выбираем, тем более точными будут построения.

Конус

Решим те же задачи построения проекций точки и линии, лежащих на поверхности конуса (рис. 4.5).

Рис. 4.5. Построение проекций точек и линии на поверхности конуса.

Построим отсутствующие проекции точек А и В, расположенных на поверхности прямого кругового конуса, если известно положение А2 и В2.

Для построение горизонтальной проекции точки, например А, необходимо через ее фронтальную проекцию провести горизонтальную линию. Тогда на П1 эта линия 12 представляет собой дугу окружности диаметром 1222=1121. По линии связи на ней находим А1. Аналогично, проводя дугу окружности радиусом S131, равным расстоянию от оси конуса до точки 32 на его контуре, определяем положение на ней точки В1. По этим проекциям находим положение А3, В3.

По известной проекции А2В2 линии на поверхности конуса построить горизонтальную и профильную.

Выбрав на линии А2В2 промежуточную точку 42, найдем 41 так же, как сделали это для точек А и В. Соединив точки А1, 41, В1, получим горизонтальную проекцию линии АВ.

Для построения профильной проекции А3В3 необходимо найти положение контурной точки 4, лежащей на SA. По фронтальной проекции 42, лежащей на S2A2, находим профильную проекцию 43, лежащую на S3A3. Теперь точки А3, 43, В3 можно соединить линией.

При соединении точек линией всегда надо руководствоваться достаточно очевидным правилом: на каждой проекции точки, принадлежащие линии, следует соединять в одинаковой последовательности. Так, если на фронтальной проекции точка 4 является промежуточной, то она будет промежуточной и на других проекциях.

Решим следующую задачу. По фронтальной проекции кривой линии, лежащей на поверхности прямой пирамиды, построить горизонтальную и профильную

Проекцией сферы на любую плоскость проекций является окружность. Рассмотрим построение проекций точек на поверхности сферы

Аксонометрические проекции Образование и виды аксонометрических проекций. Коэффициенты искажения


Метрические задачи