Поверхности второй степени Пределы и числовые ряды Двойной интеграл Метод интегрирования по частям Неопределенный интеграл Основные методы интегрирования

Лекции по математике. Примеры выполнения контрольной, курсовой работы

Неопределенные интегралы

В дифференциальном исчислении основной операцией является нахождение производной заданной функции. Сущность здесь заключается в установлении скорости изменения этой функции по сравнению с аргументом. Весьма часто, однако, приходится решать обратную задачу, когда по заданной скорости течения какого-либо процесса требуется восстановить сам этот процесс. В этом случае с математической точки зрения вопрос проводится к отысканию функции по ее производной. Эта операция, называемая интегрированием, является основной во второй половине математического анализа - интегральном исчислении.

Пусть функция f(x), заданная в некотором промежутке* [a, b], во всех его точках является производной функции F(x) , также заданной в [a, b]. Тогда эта последняя функция F(x) называется первообразной функцией для функции f(x) (в промежутке [a, b]).

Имеет место

Теорема 1. У всякой непрерывной на промежутке [a, b] функции имеется первообразная.

 

Несобственные интегралы и интегралы, зависящие от параметраФункции нескольких переменных

Двойной интеграл

Элементы комбинаторики, формула Ньютона

Определенный интеграл

Теоремы о среднем

Операционное исчисление

Задачи, приводящие к понятию определенного интеграла Основным понятием интегрального исчисления является все же не понятие неопределенного интеграла, а понятие интеграла определенного. Оно существенно сложнее и целесообразно предпослать ему некоторые задачи конкретного характера, которые выясняют необходимость введения этого понятия.

Плоские линии

Способы задания плоскости

Абсолютная сходимость

Ряды с постоянными членами

Поверхности Способы аналитического задания

Производные и дифференциалы Определение производной

Векторы

Геометрические преобразования Поворот плоскости вокруг центра O на угол Осевая симметрия (симметрия относительно прямой l) на плоскости Способы аналитического задания линий Векторно-параметрическое уравнение прямой Прямая на плоскости

Теорема Абсолютная величина суммы конечного числа элементов меньше или равна сумме абсолютных величин слагаемых. При этом равенство имеет место тогда и только тогда, когда все слагаемые неположительны или все неотрицательны. Абсолютная величина произведения конечного числа элементов равна произведению абсолютных величин сомножителей.

Дискретные случайные величины

Специальные классы линий и поверхностей

Стереометрия

Нетрудно видеть, что, если функция F(x) есть первообразная для f(x), то функция F(x) + C при любом постоянном C также является первообразной для f(x). В то же время никаких других первообразных, кроме функций вида F(x) + C, у f(x) уже быть не может. Действительно, если F1(x) есть какая-то первообразная для f(x), то производная разности F1(x) - F(x) будет всюду на [a, b] равняться нулю, а тогда сама разность есть величина постоянная, т. е.

F1(x) - F(x) = CиF1(x) = F(x) + C.

Если F(x) есть первообразная функция для f(x), то функция двух аргументов x и C, равная F(x) + C, называется неопределенным интегралом функции f(x) и обозначается символом

Таким образом, неопределенный интеграл какой-нибудь функции представляет собой общий вид первообразных функций для этой функции. Величина C, входящая в определение неопределенного интеграла, называется "произвольной постоянной". Придавая ей то или иное закрепленное значение, можем получить из неопределенного интеграла любую первообразную.

Легко понять, что из самого определения понятия интеграла вытекает следующее утверждение:

Теорема 2. Производная неопределенного интеграла равна подинтегральной функции, т. е.


На главную