Развитие атомной энергетики. Строительство и эксплуатация энергоблоков

Радиоактивность
ДОЗЫ РАДИАЦИОННОГО ОБЛУЧЕНИЯ
Естественные источники радиации
Земная радиация
Внутреннее облучение
Другие источники радиации
Источники, созданные человеком
Ядерные взрывы
Атомная энергетика
Профессиональное облучение
Действие радиации на человека
Острое поражение
Рак
Генетические последствия облучения
Понятие приемлемого риска
 

Основное оборудование АЭС и его характеристики

Реакторная установка ВВЭР-1200.

Водо-водяной энергетический реактор ВВЭР-1200 предназначен для выработки тепловой энергии в составе реакторной установки и представляет собой вертикальный сосуд высокого давления, внутри которого на опорной конструкции размещается комплекс ТВС, образующий активную зону. Корпус реактора изготовлен из высокопрочной теплостойкой легированной стали. В качестве ядерного топлива используется двуокись урана. Теплоносителем и замедлителем в реакторе является химически обессоленная вода с борной кислотой, концентрация которой изменяется в процессе эксплуатации. В качестве интегрированного выгорающего поглотителя используется гадолиний в виде оксида гадолиния () с естественным содержанием изотопов. [8]

Основные проектные характеристики первого контура при работе РУ на номинальной мощности приведены в таблице 1. На рисунке 2 представлен реактор. [8]

Таблица 1 – Основные характеристики первого контура с РУ ВВЭР-1200

Наименование

Значение

Номинальная мощность реактора,

3200

Давление первого контура на выходе из АЗ,

Температура теплоносителя на входе в реактор,

Температура теплоносителя на выходе из реактора,

Расход теплоносителя через реактор,

Количество топливных кассет, шт

163

Количество твэлов в ТВС, шт

312

Количество органов регулирования, шт

121

Рисунок 2 – Реактор

2.2 Парогенератор.

Парогенератор предназначен для отвода тепла от теплоносителя первого контура и генерации сухого насыщенного пара. Тип парогенератора - горизонтальный однокорпусной с погруженной поверхностью теплообмена из горизонтально расположенных труб, системой раздачи основной и аварийной питательной воды, погруженным дырчатым листом и паровым коллектором. Внутри корпуса парогенератора размещены внутрикорпусные устройства, трубный пучок коридорной компоновки с двумя коллекторами первого контура. [8]

Проектные характеристики парогенератора представлены в таблице 2. На рисунке 3 представлен общий вид парогенератора.

Таблица 2 – Основные характеристики ПГВ-1000МК

Наименование

Значение

Паропроизводительность в номинальном режиме,

1600+112

Давление пара на выходе (абс), МПа

Температура пара в корпусе ПГ,

Температура питательной воды,

Влажность пара на выходе из ПГ, %

0,2

Расход непрерывной продувки,

25

Рисунок 3 – Парогенератор

В настоящее время в России функционирует 10 атомных электростанций, на которых эксплуатируется 31 энергоблок установленной мощностью 23242 МВт, из них 15 реакторов с водой под давлением - 9 ВВЭР-1000 (водо-водяной энергетический реактор корпусного типа), 6 - ВВЭР-440, 15 канальных кипящих реакторов - 11 РБМК-1000 (реактор большой мощности канальный) и 4 ЭГП-6 (энергетический графитовый петлевой реактор), 1 реактор на быстрых нейтронах. В России существует большая национальная программа по развитию атомной энергетики, включающей строительство 28 ядерных реакторов в ближайшие год. Россия занимает 4-е место в мире по установленной мощности АЭС.

Турбина K-1200-6,85/3000. Турбина электрической мощностью не менее 1160 МВт с числом оборотов 3000 об/с, предназначена для непосредственного привода генератора переменного тока ТЗВ-1200-2УЗ, монтируемого на общем фундаменте с турбиной. Турбина устанавливается в моноблоке с реактором ВВЭР-120

Составление расчетной принципиальной тепловой схемы блока Тепловая схема объединяет технологические системы второго контура АЭС с реакторной установкой ВВЭР-1200. Различают принципиальную и развернутую (полную) тепловые схемы станции. Принципиальная тепловая схема включает в себя только основные установки - реакторную, парогенераторную, паротурбинную, конденсационную и деаэрационно-питательную. На эту схему наносят основные трубопроводы, соединяющие эти установки в единую технологическую схему. На линиях стрелками указывают направления потоков пара и конденсата.

Построение рабочего процесса расширения пара в турбине

Определение параметров пара и воды в элементах системы

Пароперегреватель (первая и вторая ступени)

Определение расхода пара на турбопривод ПН

Выбор вспомогательного оборудования АЭС Регенеративные подогреватели. В схеме предусмотрено четыре ступени регенерации низкого давления. Горизонтальные подогреватели поверхностного типа ПНД-1, уста­навливаются в верхней части каждого корпуса конденсатора и работают параллельно по пару и основному конденсату и без отключения по пару и конденсату. Вертикальный цельносварной подогреватель ПНД-2 - смешивающе­го типа с деаэрирующим устройством, не отключаемый по пару. Вертикальные подогреватели поверхностного типа ПНД-3 и ПНД-4 - выносные, однокорпусные, с П-образными трубками имеют отключение по водяной стороне и по пару.

Деаэратор термический повышенного давления производительностью 6300 т/ч. Деаэратор предназначен для удаления коррозионно-агрессивных газов из питательной воды, подогрева питательной воды в номинальном, пусковых и переходных режимах работы энергоблока, а также для создания запаса питательной воды, обеспечивающего питание парогенераторов в переходных ре­жимах и устойчивую работу питательных насосов.

Компоновка оборудования в главном здании АЭС Здание реактора определяет расположение всех зданий и сооружений АЭС. В состав здания реактора входят: внутренняя защитная герметичная оболочка (11) и помещения внутри защитной герметичной оболочки; наружная защитная оболочка (12), помещения межоболочечного пространства, помещения оборудования и грубо проводов системы пассивного отвода тепла от защитной оболочки (6) (СПОТ ЗО) и системы пассивного отвода тепла через парогенераторы (9) (СПОТ ПГ).

ЯДЕРНЫЕ РЕАКТОРЫ За исключением небольшого числа опытных реакторов, все установленные в настоящее время в мире ядерные реакторы основаны на использовании тепла, освобождаемого в результате цепной реакции деления изотопа урана 235U. Чаще всего эта реакция происходит следующим образом.

Кроме водо-водяных и кипящих реакторов на атомных электростанциях различных стран мира применяются или разрабатываются и другие типы реакторов.

ТОПЛИВНЫЕ ЭЛЕМЕНТЫ Топливным элементом называется гальванический элемент, преобразующий химическую энергию реагирующих между собой веществ в электрическую энергию, но отличающийся от первичного гальванического элемента тем, что реагенты вводятся в него постоянно, по мере расходования.

МАГНИТОГИДРОДИНАМИЧЕСКИЕ  ГЕНЕРАТОРЫ В 1970-ые и 1980-ые годы в мире (наиболее интенсивно в США и в Советском Союзе) исследовались и испытывались возможности непосредственного преобразования энергии, возникающей при сгорании топлива, в электрическую энергию при помощи магнитогидродинамических (МГД-) генераторов, основанных на возникновении электродвижущей силы (ЭДС) в ионизированном газовом потоке, когда этот поток проходит через сильное постоянное магнитное поле.

ГИДРАВЛИЧЕСКИЕ  ТУРБИНЫ Гидротурбина преобразовывает кинетическую энергию воды в механическую энергию вращения.

Ветряная турбина (ветродвигатель) преобразовывает кинетическую энергию ветра в механическую энергию вращения. На современных ветряных электростанциях находят применение, главным образом, два вида ветряных турбин:

крыльчатые турбины (с горизонтальной осью вращения),

карусельные турбины (с вертикальной осью вращения).

ФОТОЭЛЕКТРИЧЕСКИЕ  ПРЕОБРАЗОВАТЕЛИ

К фотоэлектрическим преобразователям относятся

вентильные фотоэлементы,

вакуумные и газонаполненные (ламповые) фотодиоды,

фототранзисторы и фототиристоры,

электрохимические (жидкостные) фотоэлементы.

Фотоэлектрический эффект (в электропроводящей жидкости) открыл в 1839 году молодой французский физик Александр Эдмонд Беккерель (Alexandre Edmond Becquerel, 1820–1891). В 1877 году английские физики Уильям Грильс Адамс (William Grylls Adams, 1836–1915) и Р. Э. Дей (R. E. Day) изготовили первый (селеновый) вентильный фотоэлемент, и в 1883 году американский изобретатель Чарлз Фриттс (Charles Fritts) добился на нем кпд около 1 %.

Атомная энергетика, радиация. Решение задач по физике